Rajae El Ouazzani
Moulay Ismail University of Meknes

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Deep convolutional neural networks architecture for an efficient emergency vehicle classification in real-time traffic monitoring Amine Kherraki; Rajae El Ouazzani
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 1: March 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i1.pp110-120

Abstract

Nowadays, intelligent transportation system (ITS) has become one of the most popular subjects of scientific research. ITS provides innovative services to traffic monitoring. The classification of emergency vehicles in traffic surveillance cameras provides an early warning to ensure a rapid reaction in emergency events. Computer vision technology, including deep learning, has many advantages for traffic monitoring. For instance, convolutional neural network (CNN) has given very good results and optimal performance in computer vision tasks, such as the classification of vehicles according to their types, and brands. In this paper, we will classify emergency vehicles from the output of a closed-circuit television (CCTV) camera. Among the advantages of this research paper is providing detailed information on the emergency vehicle classification topic. Emergency vehicles have the highest priority on the road and finding the best emergency vehicle classification model in realtime will undoubtedly save lives. Thus, we have used eight CNN architectures and compared their performances on the Analytics Vidhya Emergency Vehicle dataset. The experiments show that the utilization of DenseNet121 gives excellent classification results which makes it the most suitable architecture for this research topic, besides, DenseNet121 does not require a high memory size which makes it appropriate for real-time applications. 
Residual balanced attention network for real-time traffic scene semantic segmentation Amine Kherraki; Shahzaib Saqib Warraich; Muaz Maqbool; Rajae El Ouazzani
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 3: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i3.pp3281-3289

Abstract

Intelligent transportation systems (ITS) are among the most focused research in this century. Actually, autonomous driving provides very advanced tasks in terms of road safety monitoring which include identifying dangers on the road and protecting pedestrians. In the last few years, deep learning (DL) approaches and especially convolutional neural networks (CNNs) have been extensively used to solve ITS problems such as traffic scene semantic segmentation and traffic signs classification. Semantic segmentation is an important task that has been addressed in computer vision (CV). Indeed, traffic scene semantic segmentation using CNNs requires high precision with few computational resources to perceive and segment the scene in real-time. However, we often find related work focusing only on one aspect, the precision, or the number of computational parameters. In this regard, we propose RBANet, a robust and lightweight CNN which uses a new proposed balanced attention module, and a new proposed residual module. Afterward, we have simulated our proposed RBANet using three loss functions to get the best combination using only 0.74M parameters. The RBANet has been evaluated on CamVid, the most used dataset in semantic segmentation, and it has performed well in terms of parameters’ requirements and precision compared to related work.