Nurazizah Mahmod
Universiti Teknologi Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Modelling and control of fouling in submerged membrane bioreactor using neural network internal model control Nurazizah Mahmod; Norhaliza Abdul Wahab; Muhammad Sani Gaya
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 9, No 1: March 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (502.611 KB) | DOI: 10.11591/ijai.v9.i1.pp100-108

Abstract

Membrane bioreactor (MBR) is one of the best solutions for water and wastewater treatment systems in producing high quality effluent that meets its standard regulations. However, fouling is one of the main issues in membrane filtration for membrane bioreactor system. The prediction of fouling is crucial in the membrane bioreactor control system design. This paper presents an intelligence modeling system so called artificial neural network (ANN). The feedforward neural network (FFNN), radial basis function neural network (RBFNN) and nonlinear autoregressive exogenous neural network (NARXNN) are applied to model the submerged MBR filtration system. The simulation results show good predictions for all methods which the highest performance of the model given by RBFNN. Based on the developed models, the neural network internal model control (NNIMC) is implemented to control fouling development in membrane filtration process. Three different control structures of the NNIMC are proposed. The FFNN IMC, RBFNN IMC and NARXNN IMC controllers are compared to the conventional IMC. The RBFNN IMC has a superior performance both in tracking and disturbance rejections.
Fouling Prediction using Neural Network Model for Membrane Bioreactor System Nurazizah Mahmod; Norhaliza Abdul Wahab
Indonesian Journal of Electrical Engineering and Computer Science Vol 6, No 1: April 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v6.i1.pp200-206

Abstract

Membrane bioreactor (MBR) technology is a new method for water and wastewater treatment due to its ability to produce better and high-quality effluent that meets water quality regulations. MBR also is an advanced way to displace the conventional activated sludge (CAS) process. Even this membrane gives better performances compared to CAS, it does have few drawbacks such as high maintenance cost and fouling problem. In order to overcome this problem, an optimal MBR plant operation need to be developed. This can be achieved through an accurate model that can predict the fouling behaviour which could optimise the membrane operation. This paper presents the application of artificial neural network technique to predict the filtration of membrane bioreactor system. The Radial Basis Function Neural Network (RBFNN) is applied to model the developed submerged MBR filtration system. RBFNN model is expected to give good prediction model of filtration system for estimating the fouling that formed during filtration process.