Norliza Mohd Noor
Universiti Teknologi Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Classification of adult autistic spectrum disorder using machine learning approach Nurul Amirah Mashudi; Norulhusna Ahmad; Norliza Mohd Noor
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp743-751

Abstract

Autism spectrum disorder (ASD) is a neurological-related disorder. Patients with ASD have poor social interaction and lack of communication that lead to restricted activities. Thus, early diagnosis with a reliable system is crucial as the symptoms may affect the patient’s entire lifetime. Machine learning approaches are an effective and efficient method for the prediction of ASD disease. The study mainly aims to achieve the accuracy of ASD classification using a variety of machine learning approaches. The dataset comprises 16 selected attributes that are inclusive of 703 patients and non-patients. The experiments are performed within the simulation environment and analyzed using the Waikato environment for knowledge analysis (WEKA) platform. Linear support vector machine (SVM), k-nearest neighbours (k-NN), J48, Bagging, Stacking, AdaBoost, and naïve bayes are the methods used to compute the prediction of ASD status on the subject using 3, 5, and 10-folds cross validation. The analysis is then computed to evaluate the accuracy, sensitivity, and specificity of the proposed methods. The comparative result between the machine learning approaches has shown that linear SVM, J48, Bagging, Stacking, and naïve bayes produce the highest accuracy at 100% with the lowest error rate.
A compact deep learning model for Khmer handwritten text recognition Bayram Annanurov; Norliza Mohd Noor
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp584-591

Abstract

The motivation of this study is to develop a compact offline recognition model for Khmer handwritten text that would be successfully applied under limited access to high-performance computational hardware. Such a task aims to ease the ad-hoc digitization of vast handwritten archives in many spheres. Data collected for previous experiments were used in this work. The oneagainst-all classification was completed with state-of-the-art techniques. A compact deep learning model (2+1CNN), with two convolutional layers and one fully connected layer, was proposed. The recognition rate came out to be within 93-98%. The compact model is performed on par with the state-of-theart models. It was discovered that computational capacity requirements usually associated with deep learning can be alleviated, therefore allowing applications under limited computational power.