Poonam Tanwar
Manav Rachna International Institute of Research and Studies

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

A prediction model for benefitting e-commerce through usage of regional data: A new framework Shefali Singhal; Poonam Tanwar
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp1009-1018

Abstract

Today during ‘Covid-20’, people are more inclined towards online shopping. In general practice, analysis of browsing history and customer’s micro behaviour against online shopping habits have been used for future suggestions. Due to this, the predictions made were suffereing from over-similarity problem and the user was unable to find any novelty in the recommended items. Observing these issues, e-shopping quality can be enhanced by adding a factor other than similarity. The current research suggests and advertise those products which belongs to a person’s region. For this research work the data has been collected on the basis of area-wise, like, country-based seggregation. Here the considered dataset belongs to country, ‘India’, its culture, its handicraft and its citizens. Datasets and their combinations based on multiple attributes are input for the proposed predictive system. In this paper, existing data is also considered for collecting customers demographic details which is further mapped with the area-wise dataset. Also, a framework has been proposed which uses database and user query as input for its predictive system in order to generate default suggestions for the user other than the submitted query also.
Automatic video censoring system using deep learning Yash Verma; Madhulika Bhatia; Poonam Tanwar; Shaveta Bhatia; Mridula Batra
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6744-6755

Abstract

Due to the extensive use of video-sharing platforms and services, the amount of such all kinds of content on the web has become massive. This abundance of information is a problem controlling the kind of content that may be present in such a video. More than telling if the content is suitable for children and sensitive people or not, figuring it out is also important what parts of it contains such content, for preserving parts that would be discarded in a simple broad analysis. To tackle this problem, a comparison was done for popular image deep learning models: MobileNetV2, Xception model, InceptionV3, VGG16, VGG19, ResNet101 and ResNet50 to seek the one that is most suitable for the required application. Also, a system is developed that would automatically censor inappropriate content such as violent scenes with the help of deep learning. The system uses a transfer learning mechanism using the VGG16 model. The experiments suggested that the model showed excellent performance for the automatic censoring application that could also be used in other similar applications.