Usfita Kiftiyani
Informatics Engineering, UIN Sunan Kalijaga Yogyakarta

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Techno.Com: Jurnal Teknologi Informasi

Perangkingan Dokumen Berbahasa Arab berdasarkan Query dengan Metode Klasifikasi Naïve Bayes dan K-Nearest Neighbor Usfita Kiftiyani; Suprapto Suprapto; Novanto Yudistira
Techno.Com Vol 19, No 4 (2020): November 2020
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/tc.v19i4.3939

Abstract

Penelitian tentang perangkingan dokumen pada temu kembali informasi saat ini mudah ditemukan, hal ini terkait perkembangan keilmuan dibidang penggalian informasi yang bergerak sangat cepat. Namun, Walaupun sudah penelitian yang menggunakan Bahasa Arab sebagai objek masih terbatas. Karena keterbatasan penggunaan dokumen Bahasa Arab untuk penelitian bidang penggalian informasi maka penulis mencoba melakukan pendekatan sederhana, yaitu dengan mengimplementasikan metode klasifikasi naïve bayes dan k-Nearest Neighbor (k-NN). Tujuan dari penelitian ini adalah untuk mengetahui apakah metode klasifikasi terutama naïve bayes dan k-NN dapat digunakan untuk melakukan perangkingan, dan juga membandingkan akurasi dari kedua metode tersebut. Berdasarkan penelitian yang dilakukan, didapatkan hasil bahwa perangkingan dengan metode klasifikasi dapat dilakukan dengan tingkat akurasi metode Naïve Bayes lebih baik dibandingkan dengan metode k-NN dengan rata-rata nilai F1 Measure mencapai 72%, rata-rata nilai precision mencapai 75%, dan rata-rata nilai recall mencapai 80%. Sedangkan hasil dari metode k-NN diperoleh rata-rata nilai F1 Measure mencapai 70%, rata-rata nilai precision mencapai 76%, dan rata-rata nilai recall mencapai 79%. Namun penelitian ini masih kurang dari segi teknik yang dilakukan, yaitu dengan menghilangkan proses stemming. Sehngga penulis memberikan saran untuk penelitian selanjutnya supaya bisa dilakukan proses stemming dan menggunakan metode perangkingan yang lebih baru.