Claim Missing Document
Check
Articles

Klasifikasi citra makanan/non makanan menggunakan metode Transfer Learning dengan model Residual Network Thiodorus, Gustavo; Prasetia, Anugrah; Ardhani, Luthfi Afrizal; Yudistira, Novanto
TEKNOLOGI: Jurnal Ilmiah Sistem Informasi Vol 11, No 2 (2021): July
Publisher : Universitas Pesantren Tinggi Darul 'Ulum (Unipdu) Jombang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/teknologi.v11i2.2402

Abstract

People's activities that often upload photos of food before eating are common in popular social media, such as Facebook, Instagram, Twitter, and Pinterest. The food image data circulating on social media can be used for business purposes, such as analyzing customer behavior patterns. However, not all of the uploaded images are food images, so that before the analysis is carried out, it is necessary to do a classification task between food images and non-food images. Therefore, the researcher proposes automatic food image classification using transfer learning method using the Residual Network model version of 18 (ResNet-18). Residual Network model is used because it has a residual connection mechanism to solve the vanishing gradient problem. In addition, transfer learning was chosen because this method leverages the features and weights that have been generated in the previous training process on large and more general data (Imagenet) and thus reduce computation time and increase accuracy. The test was carried out by comparing the capabilities of the ResNet18 model with AlexNet. In addition, the fine tuning and freeze layer methods used to improve the quality of the model were also carried out in this study. In the experiment, the data set was divided into 3,000 images for training data and 1,000 images for test data, while the evaluation used was correctness accuracy. The results obtained in the ResNet18 model, namely the fine tuning training method, produced an accuracy value of 0.981 while the freeze layer resulted in the best accuracy value of 0.988. The AlexNet model that uses the fine tuning training method produces an accuracy value of 0.970 while the freeze layer produces the best accuracy value of 0.978. It can be concluded that the mechanism with the best accuracy is found in the RestNet18 architecture using the freeze layer 1-3 with an accuracy of 0.988.
Klasifikasi citra makanan/non makanan menggunakan metode Transfer Learning dengan model Residual Network Thiodorus, Gustavo; Prasetia, Anugrah; Ardhani, Luthfi Afrizal; Yudistira, Novanto
TEKNOLOGI: Jurnal Ilmiah Sistem Informasi Vol 11, No 2 (2021): July
Publisher : Universitas Pesantren Tinggi Darul 'Ulum (Unipdu) Jombang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/teknologi.v11i2.2402

Abstract

People's activities that often upload photos of food before eating are common in popular social media, such as Facebook, Instagram, Twitter, and Pinterest. The food image data circulating on social media can be used for business purposes, such as analyzing customer behavior patterns. However, not all of the uploaded images are food images, so that before the analysis is carried out, it is necessary to do a classification task between food images and non-food images. Therefore, the researcher proposes automatic food image classification using transfer learning method using the Residual Network model version of 18 (ResNet-18). Residual Network model is used because it has a residual connection mechanism to solve the vanishing gradient problem. In addition, transfer learning was chosen because this method leverages the features and weights that have been generated in the previous training process on large and more general data (Imagenet) and thus reduce computation time and increase accuracy. The test was carried out by comparing the capabilities of the ResNet18 model with AlexNet. In addition, the fine tuning and freeze layer methods used to improve the quality of the model were also carried out in this study. In the experiment, the data set was divided into 3,000 images for training data and 1,000 images for test data, while the evaluation used was correctness accuracy. The results obtained in the ResNet18 model, namely the fine tuning training method, produced an accuracy value of 0.981 while the freeze layer resulted in the best accuracy value of 0.988. The AlexNet model that uses the fine tuning training method produces an accuracy value of 0.970 while the freeze layer produces the best accuracy value of 0.978. It can be concluded that the mechanism with the best accuracy is found in the RestNet18 architecture using the freeze layer 1-3 with an accuracy of 0.988.
Perangkingan Dokumen Berbahasa Arab berdasarkan Query dengan Metode Klasifikasi Naïve Bayes dan K-Nearest Neighbor Usfita Kiftiyani; Suprapto Suprapto; Novanto Yudistira
Techno.Com Vol 19, No 4 (2020): November 2020
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/tc.v19i4.3939

Abstract

Penelitian tentang perangkingan dokumen pada temu kembali informasi saat ini mudah ditemukan, hal ini terkait perkembangan keilmuan dibidang penggalian informasi yang bergerak sangat cepat. Namun, Walaupun sudah penelitian yang menggunakan Bahasa Arab sebagai objek masih terbatas. Karena keterbatasan penggunaan dokumen Bahasa Arab untuk penelitian bidang penggalian informasi maka penulis mencoba melakukan pendekatan sederhana, yaitu dengan mengimplementasikan metode klasifikasi naïve bayes dan k-Nearest Neighbor (k-NN). Tujuan dari penelitian ini adalah untuk mengetahui apakah metode klasifikasi terutama naïve bayes dan k-NN dapat digunakan untuk melakukan perangkingan, dan juga membandingkan akurasi dari kedua metode tersebut. Berdasarkan penelitian yang dilakukan, didapatkan hasil bahwa perangkingan dengan metode klasifikasi dapat dilakukan dengan tingkat akurasi metode Naïve Bayes lebih baik dibandingkan dengan metode k-NN dengan rata-rata nilai F1 Measure mencapai 72%, rata-rata nilai precision mencapai 75%, dan rata-rata nilai recall mencapai 80%. Sedangkan hasil dari metode k-NN diperoleh rata-rata nilai F1 Measure mencapai 70%, rata-rata nilai precision mencapai 76%, dan rata-rata nilai recall mencapai 79%. Namun penelitian ini masih kurang dari segi teknik yang dilakukan, yaitu dengan menghilangkan proses stemming. Sehngga penulis memberikan saran untuk penelitian selanjutnya supaya bisa dilakukan proses stemming dan menggunakan metode perangkingan yang lebih baru.
Batik Classification Using Convolutional Neural Network with Data Improvements Dewa Gede Trika Meranggi; Novanto Yudistira; Yuita Arum Sari
JOIV : International Journal on Informatics Visualization Vol 6, No 1 (2022)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.6.1.716

Abstract

Batik is one of the Indonesian cultures that UNESCO has recognized. Batik has a variety of unique and distinctive patterns that reflect the area of origin of the batik motif. Batik motifs usually have a 'core motif' printed repeatedly on the fabric. The entry of digitization makes batik motif designs more diverse and unique. However, with so many batik motifs spread on the internet, it is difficult for ordinary people to recognize the types of batik motifs. This makes an automatic classification of batik motifs must continue to be developed. Automation of batik motif classification can be assisted with artificial intelligence. Machine learning and deep learning have produced much good performance in image recognition. In this study, we use deep learning based on a Convolutional Neural Network (CNN) to automate the classification of batik motifs. There are two datasets used in this study. The old dataset comes from a public repository with 598 data with five types of motifs. Meanwhile, the new dataset updates the old dataset by replacing the anomalous data in the old dataset with 621 data with five types of motifs. The lereng motif is changed to pisanbali due to the difficulty of obtaining the lereng motif. Each dataset was divided into three ways: original, balance patch, and patch. We used ResNet-18 architecture, which used a pre-trained model to shorten the training time. The best test results were obtained in the new dataset with the patch way of 88.88 % ±0.88, and in the old dataset, the best accuracy was found in the patch way on the test data of 66.14 % ±3.7. The data augmentation in this study did not significantly affect the accuracy because the most significant increase in accuracy is only up to 1.22%.
ISSUES AND PROBLEMS IN BRAIN MAGNETIC RESONANCE IMAGING: AN OVERVIEW Novanto Yudistira; Daut Daman
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 6, No 1: April 2008
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v6i1.551

Abstract

There are many issues and problems in the brain magnetic resonance imaging (MRI) area that haven’t solved or reached satisfying result yet. This paper presents an overview of the various issues and problems of the segmentation, correction, optimization, description and their application in MRI. The overview is started by describing the segmentation properties that are the most important and challenging in MRI brain manipulation. Then correction for reconstructing the brain MRI cortex, classification is utilized to classify the segmented brain image, and also review the uses of description is the great prospecting issue while some neurologist need the information resulted from brain imaging process including their potential problems from application applied by each technique. In each case, it is provided some general background information.
Peran Big Data dan Deep Learning untuk Menyelesaikan Permasalahan Secara Komprehensif Novanto Yudistira
EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi Vol 11, No 2 (2021): December
Publisher : Universitas Bandar Lampung (UBL)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36448/expert.v11i2.2063

Abstract

Peran sain data besar (Big Data) dan pembelajaran mesin dewasa ini tidak dapat terelakkan terutama untuk menganalisis data dan memberikan kecerdasan pada komputer agar bekerja secara otonom untuk menyelesaikan suatu pekerjaan tertentu. Perkembangan teknologi sensor dan internet membuat ketersediaan data tersebut melimpah yang selanjutnya dapat dilakukan analisis data dalam jumlah yang besar. Hal tersebut mempengaruhi bagaimana cara pandang komputasi dalam berbagai macam bidang baik ilmu alam maupun sosial. Data yang terkumpul dapat berupa beragam format dengan laju pertambahan yang cepat dan dinamis. Kita perlu algoritma atau model yang mumpuni untuk memahami dan menggali pengetahuan pada set data yang besar tersebut beserta rancangan modelnya yang secara otomatis mempunyai kemampuan memprediksi atau mendeteksi. Deep Learning dengan kapasitasnya yang besar serta hubungan korelasi antar neuron yang sangat banyak diharapkan mampu menjawab tantangan tersebut didukung oleh beberapa penelitian terkini pada penerapannnya di berbagai bidang keilmuan. Dalam paper ini akan dipaparkan contoh pemanfaatan Deep Learning pada Big Data yang telah kita lakukan pada pengenalan video aksi manusia pada Youtube, Segmentasi pada sel berskala besar, citra dada x-ray dan data time-series multi variabel hubungannya dengan pandemi COVID-19.
Facial Expression Recognition using Residual Convnet with Image Augmentations Fadhil Yusuf Rahadika; Novanto Yudistira; Yuita Arum Sari
Jurnal Ilmu Komputer dan Informasi Vol 14, No 2 (2021): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21609/jiki.v14i2.968

Abstract

During the COVID-19 pandemic, many offline activities are turned into online activities via video meetings to prevent the spread of the COVID 19 virus. In the online video meeting, some micro-interactions are missing when compared to direct social interactions. The use of machines to assist facial expression recognition in online video meetings is expected to increase understanding of the interactions among users. Many studies have shown that CNN-based neural networks are quite effective and accurate in image classification. In this study, some open facial expression datasets were used to train CNN-based neural networks with a total number of training data of 342,497 images. This study gets the best results using ResNet-50 architecture with Mish activation function and Accuracy Booster Plus block. This architecture is trained using the Ranger and Gradient Centralization optimization method for 60000 steps with a batch size of 256. The best results from the training result in accuracy of AffectNet validation data of 0.5972, FERPlus validation data of 0.8636, FERPlus test data of 0.8488, and RAF-DB test data of 0.8879. From this study, the proposed method outperformed plain ResNet in all test scenarios without transfer learning, and there is a potential for better performance with the pre-training model. The code is available at https://github.com/yusufrahadika-facial-expressions-essay.
Deteksi Covid-19 pada Citra Sinar-X Dada Menggunakan Pre-Training Deep Autoencoder Fadhil Yusuf Rahadika; Karina Amadea; Adhi Setiawan; Griselda Anjeli Sirait; Novanto Yudistira
Jurnal Ilmu Komputer & Agri-Informatika Vol. 8 No. 2 (2021)
Publisher : Departemen Ilmu Komputer - IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jika.8.2.95-104

Abstract

Deteksi Covid-19 umumnya menggunakan tes laboratorium dengan metode RT-PCR untuk mendapatkan hasil yang akurat. Sayangnya, tes ini membutuhkan waktu yang cukup lama yaitu sekitar 24 jam untuk mendapatkan hasil. Selain menggunakan RT-PCR, beberapa penelitian menunjukkan bahwa deteksi menggunakan citra sinar-X menunjukkan hasil yang cukup akurat dengan waktu prediksi yang lebih cepat. Citra sinar-X yang didominasi warna dalam jangkauan grayscale dapat dikatakan memiliki karakteristik yang berbeda jika dibandingkan dengan citra secara umum, sehingga dalam penelitian ini eksperimen dilakukan terhadap pelatihan untuk kasus klasifikasi citra sinar-X dengan melatih model dari awal (scratch). Namun seringkali model yang dilatih tanpa adanya pretraining menyebabkan model tidak dapat mencapai performa yang cukup baik. Salah satu bentuk metode pretraining yang dapat digunakan adalah penggunaan autoencoder sebagai model untuk rekonstruksi citra. Dalam penelitian ini pelatihan menggunakan pretraining autoencoder menghasilkan akurasi terbaik sebesar 81.78% dengan tambahan metode CutMix, color manipulation, dan rotation sebagai augmentasi. Kami juga menunjukkan bahwa penambahan pretraining autoencoder secara konsisten dapat meningkatkan akurasi hingga 2.58% pada model yang dilatih dari awal (scratch).
Algoritma Decision Tree Dan Smote Untuk Klasifikasi Serangan Jantung Miokarditis Yang Imbalance Novanto Yudistira; Aldi Fianda Putra
Jurnal Litbang Edusaintech Vol. 2 No. 2 (2021): Volume 2 No 2 2021
Publisher : Litbang PWM Jawa Tengah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51402/jle.v2i2.48

Abstract

Serangan jantung atau dalam medis bernama Myocardial Infarction atau infark miokard adalah gangguan jantung yang sangat serius. Dalam pendeteksian ini menggunakan komplikasi-komplikasi yang diderita oleh pasien. Algoritma yang akan dievaluasi yaitu Naive Bayes, Decision Tree, dan Support Vector Machine. Namun tidak serta merta dapat dilakukan evaluasi. Sebelum mengevaluasi ketiga algoritma ini dilakukan perbaikan dataset, karena pada dataset ini sendiri terdapat data yang kosong. Perbaikan dilakukan dengan cara mengimputasikan data dimana nilai diperkirakan berdasarkan rata-rata dari anggota klaster pada kelas yang sama. Setelah melakukan imputasi data, maka dapat dilakukan normalisasi dengan metode MinMax dengan tujuan agar rentang fitur terutama data numerik kontinu tidak terlalu besar. Setelah pemrosesan data awal dilakukan maka barulah kita dapat melakukan evaluasi dengan menggunakan metode K-fold Cross Validation. Namun lagi-lagi ditemukan kesalahan yakni data latih yang digunakan ternyata tidak seimbang. Oleh sebab itu dilakukan oversampling pada data agar data menjadi seimbang. Setelah seimbang maka kita dapat melakukan evaluasi kembali dan diperolehlah algoritma yang cocok untuk mengklasifikasikan data seperti dataset Myocardial Infarction Complications adalah algoritma Decision Tree dengan akurasi 98%, diikuti algoritma Support Vector Machine dengan akurasi 91% dan Naïve Bayes dengan akurasi paling rendah yakni 49%.
Perbandingan Model AlexNet dan ResNet dalam Klasifikasi Citra Bunga Memanfaatkan Transfer Learning Bana Falakhi; Elmira Faustina Achmal; Muhammad Rizaldi; Renata Rizki Rafi' Athallah; Novanto Yudistira
Jurnal Ilmu Komputer dan Agri-Informatika Vol 9 No 1 (2022)
Publisher : Departemen Ilmu Komputer, Institut Pertanian Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jika.9.1.70-78

Abstract

Image-based automatic flower species classification is an important issue for biologists creating digital flower catalogs. Many studies on flower species recognition have been proposed so far based on traditional image processing routines. Currently, researchers are applying deep learning to various image-based object recognition tasks. In this paper, deep learning based on transfer learning is applied to the classification of flower species. The proposed methoduses AlexNet and ResNet transfer learning models. The Flower102 dataset which has many categories is used in the experimental work. Various experimental results show that each model has achieved 87% and 96% accuracy performance for AlexNet and ResNet. Theresults obtained show that the effectiveness of the ResNet-based model is higher than the AlexNet-based model.
Co-Authors Abdurrachman Bachtiar, Fitra Abel Filemon Haganta Kaban Achmad Basuki Achmad Ridok Adam Hendra Brata Adhi Setiawan Aditama, Gustian Agi Putra Kharisma Agus Wahyu Widodo Agus Wahyu Widodo Agus Wahyu Widodo, Agus Wahyu Akbar, Alvin Tarisa Al Huda, Fais Aldi Fianda Putra Alfen Hasiholan Almasyhur, Muhammad Bin Djafar Alwan, Muhammad Fajrul Amin, Muhammad Basil Musyaffa Anarya Indika Putra Andina, Sherla Puspa Anggraheni, Hanna Shafira Annisa Sukmawati Apriyanti -, Apriyanti Ardhani, Luthfi Afrizal Ardhanto, Riyadh Ilham Arifandis Winata Arifien, Zainal Asmani, Wahayu Widyaning Austin, Yehezkiel Stephanus Bahrur Rizki Putra Surya Bana Falakhi Bayu Rahayudi Budi Darma Setiawan Caesar Rio Anggina Toruan Cahyo Prayogo, Cahyo Candra Dewi Cevita Detri Intan Suryaningrum Chindy Aulia Sari Christopher, Juan Young Darmawan, Abizard Hashfi Darmawan, Hanif Daud, Nathan Daut Daman Dewa Gede Trika Meranggi Dhaifullah, Afif Naufal Dhifan Diandra H Didik Suprayogo Dytha Suryani Edy Santoso Edy Santoso Elmira Faustina Achmal Eriq Muhammad Adams Jonemaro Fadhil Yusuf Rahadika Fadhil Yusuf Rahadika Fadhil Yusuf Rahadika Fahmi Achmad Fauzi Fajrina, Julia Nur Fathina Atsila F Fauzi, Muhammad Rifqi Firhan Fauzan Hamdani Fitra Abdurrachman Bachtiar Griselda Anjeli Sirait Griselda Anjeli Sirait Hafshah Durrotun Nasihah Hakim, Gibran Hakim, Sulthan Abiyyu Hanum, Assyfa Rasida Haris, Asmuni Harlan, Fajri Rayrahman Hawari, Rahmada Zulvia Azzahra Hermanto, Putri Tsania Maulidia Heru Nurwarsito Huda, Fais Al Hutamaputra, William Ikhwanul Kiram, Muh Zaqi Imam Cholissodin Indriati Indriati Iqra Ilhamsyah Irfan Ardiansyah Irfannanto, Adimas Irfano, Haikal Irwanto, M. Sofyan Izzatul Azizah Jauhar Bariq Rachmadi Javier Ardra Figo Karina Amadea Katrina Puspita Kevin Nadio Dwi Putra Khalid Rahman Khoirullah, Habib Bahari Krisnabayu, Rifky Yunus Kurnia Fakhrul Izza Kurnianingtyas, Diva Lailil Muflikhah Laksono, Khansa Salsabila Sangdiva Larasati, Saqina Salsabila Lutfi, Raniyah Mahardika, Mohammad Alfiano Rizky Manurung, Daniel Geoffrey Marasitua, Wahyu Valentino Marji Marpaung, Veronika Oktafia Maulana Ahmad Maliki Maulana, Muhammad Taufik Mawarni, Marrisaeka Meilinda Dwi Puspaningrum Michael David Muh. Arif Rahman Muhammad Rizaldi Muhammad Rizaldi Muhammad Tanzil Furqon Muhammad Zaini Rahman Natanniel Eka Christyanto Naufal, Muhammad Jilan Niluh Putu Vania Dyah Saraswati Nisa, Lisa N. Nisa, Septia Khoirin Novianti, Siska Nurannisa, Nadhira Oakley, Simon Pangondian, Yosia Permadhi, Raditya Atmaja Satria Pinasthika, Mohammad Ryan Prais Sarah Kayaningtias Prasetia, Anugrah Prayata, Rakan Fadhil Putra Pandu Adikara Putra, Octo Perdana Putri, Rania Aprilia Dwi Setya Putri, Salwa Cahyani Qurrata Ayuni Rahmadi, Anang Bagus Rahman, Muhammad Arif Raihan Hanif F RAMADHAN, ADITYA RIZKY Randy Cahya Wihandika Renata Rizki Rafi' Athallah Rian Nugroho Rilinka Rilinka Rishani Putri Aprilli Rizal Setya Perdana Rizky, Audhinata Bebytama RR. Ella Evrita Hestiandari Sabriansyah Rizqika Akbar, Sabriansyah Sahirah, Rafifa Addin Saputra, Kylix Eza Sastomo, Yogi Puji Selle, Nurfatima Setyawan Purnomo Sakti Sholeh, Mahrus Stephen Lui, Michael Sugihdharma, Joseph Ananda Sukma, Lintang Cahyaning Sulthon Akhdan G Suprapto Suprapto Sutrisna, Naufal Putra Syafira, Putri Amanda Tampubolon, Agustinus Parasian Thiodorus, Gustavo Timothy Bastian Sianturi Usfita Kiftiyani Vasya, Muhammad Azka Obila Wa Ode May Zhara Averina Wahyu Taufiqurrahman, Rayhan Waludi, Ikbal Wayan Firdaus Mahmudy Wulandari, Rafifah Ayud Yuita Arum Sari Yuita Arum Sari Zetha, Ivykaeyla Adriana