Rajeshwari Hegde
BMS College of Engineering

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Application of Inverse Perspective Mapping for Advanced Driver Assistance Systems in Automotive Embedded Systems Vighnesh N.T; Rachana Anil; Rohith Kumar D; Sanjana Sharvana; Rajeshwari Hegde; B S Nagabhushana
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 6, No 3: November 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (467.77 KB) | DOI: 10.11591/ijres.v6.i3.pp150-159

Abstract

In the recent times vehicle manufactures and automotive suppliers are progressing towards building vision based subsystems for provisioning driver assistance while targeting the automotive safety critical needs. While the acquired images constitute the fundamental input for any vision based system, transforms on images become essential to derive and gain insight into certain specific features. These derived features are used and reused at multiple places for varied automotive applications. This situation warrants a scalable and flexible image processing platform for a class of automotive applications. An attempt is made in this Research work to propose architecture that, specially, includes a layer of image transformations and to implement a prototype image processing platform. Inverse Perspective Mapping (IPM), a widely used class of transforms is emphasized in the present architecture alongside other nominal transforms. Lane departure warning system is implemented on this platform for the purpose of illustration and to analyze the effectiveness of the proposed architecture
Performance optimization of task intensive real time applications on multicore ECUs - a hybrid scheduler Geetishree Mishra; Rajeshwari Hegde
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 8, No 2: July 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (976.565 KB) | DOI: 10.11591/ijres.v8.i2.pp114-123

Abstract

In the current approach of Automotive electronic system design, the multicore processors have prevailed to achieve high computing performance at low thermal dissipation. Multicore processors offer functional parallelism that helps in meeting the safety critical requirements of vehicles. The number of ECUs in high-end cars could be reduced by conglomerating more functions into a multicore ECU. AUTOSAR stack has been designed to support the applications developed for multicore ECUs. The real challenges lie in adapting new design methods while developing sophisticated applications with multicore constraints. It is imperative to utilize the most of multicore computational capability towards enhancing the overall performance of ECUs. In this context the scheduling of the real time multitasking software components by the operating system is one of the key issues to be addressed. In this paper, the state of the art scheduling algorithm is reviewed and its merits and limitations are identified. A hybrid scheduler has been proposed, tested and compared with the state of the art algorithm that offers better performance in terms of CPU utilization, average response time and deadline missing rate both in normal and high load conditions.