Muhammad Azis Suprayogi
Gunadarma University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Klasifikasi Helpdesk Menggunakan Metode K-Nearest Neighbor dan TF-ABS Muhammad Azis Suprayogi; Riza Adrianti Supono
Techno.Com Vol 20, No 4 (2021): November 2021
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/tc.v20i4.5094

Abstract

Helpdesk merupakan aplikasi yang bermanfaat bagi pengguna nya untuk memperoleh informasi mengenai layanan yang ada pada sebuah perusahaan atau instansi pemerintah. Proses disposisi tiket helpdesk secara manual dapat menimbulkan kesalahan dalam menentukan unit tujuan tiket serta memperpanjang masa penyelesaian tiket karena adanya waktu tunggu untuk mendisposisikan tiket menuju unit yang sesuai. Klasifikasi teks helpdesk sangat diperlukan untuk mendisposisikan tiket secara tepat dan cepat ke unit yang berwenang menangani tiket. Teks helpdesk diklasifikasi ke dalam 8 kategori unit tujuan yaitu Setditjen, Dit.Humas, Dit.PKNSI, Dit.KND, Dit.BMN, Dit.Penilaian, Dit.PNKNL, dan Dit.Lelang. Klasifikasi menggunakan metode K-Nearest Neighbor (KNN) dengan jumlah tetangga terdekat (k) yaitu k=1,3,5,7,9,11,13,15,17,19 serta metode pembobotan TF-ABS untuk proses seleksi fitur. Jumlah fitur yang digunakan untuk klasifikasi sebanyak 5%, 10%, 15%, 20%, 25% dan 30% dari jumlah seluruh dokumen. Akurasi klasifikasi tertinggi sebesar 90,04% diperoleh pada k=3 dan jumlah fitur sebanyak 15%, sedangkan akurasi terendah 84,54% pada k=19 dan jumlah fitur sebanyak 30%. Hasil klasifikasi helpdesk menggunakan KNN dan TF-ABS dapat menghasilkan akurasi cukup baik.
Perbandingan Metode TF-ABS dan TF-IDF Pada Klasifikasi Teks Helpdesk Menggunakan K-Nearest Neighbor Riza Adrianti Supono; Muhammad Azis Suprayogi
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 5 No 5 (2021): Oktober2021
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (446.78 KB) | DOI: 10.29207/resti.v5i5.3403

Abstract

Distribution of tickets to the destination unit is a very important function in the helpdesk application, but the process of distributing tickets manually by admin officers has drawbacks, namely ticket distribution errors can occur and increase ticket completion time if the number of tickets is large. Helpdesk text classification becomes important to automatically distribute tickets to the appropriate destination units in a short time. This study was conducted to compare the performance of helpdesk text classification at the Directorate General of State Assets of the Ministry of Finance using the K-Nearest Neighbor (KNN) method with the TF-ABS and TF-IDF weighting methods. The research was conducted by collecting complaint documents, preprocessing, word weighting, feature reduction, classification, and testing. Classification using KNN with parameters n_neighbor (k) namely k=1, k=3, k=5, k=7, k=9, k=11, k=13, k=15, k=17, and k=19 to classify 10,537 helpdesk texts into 8 categories. The test uses a confusion matrix based on the accuracy value and score-f1. The test results show that the TF-ABS weighting method is better than TF-IDF with the highest accuracy value of 90.04% at 15% and k=3.