Mohamed Biniz
Sultan Moulay Slimane University

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Correcting optical character recognition result via a novel approach Otman Maarouf; Rachid El Ayachi; Mohamed Biniz
International Journal of Informatics and Communication Technology (IJ-ICT) Vol 11, No 1: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijict.v11i1.pp8-19

Abstract

Optical character recognition (OCR) is a recognition system used to recognize the substance of a checked picture. This system gives erroneous results, which necessitates a post-treatment, for the sentence correction. In this paper, we proposed a new method for syntactic and semantic correction of sentences it is based on the frequency of two correct words in the sentence and a recursive technique. This approach starts with the frequency calculation of each two words successive in the corpora, the words that have the greatest frequency build a correction center. We found 98% using our approach when we used the noisy channel. Further, we obtained 96% using the same corpus in the same conditions.
Amazigh part-of-speech tagging with machine learning and deep learning Otman Maarouf; Rachid El Ayachi; Mohamed Biniz
Indonesian Journal of Electrical Engineering and Computer Science Vol 24, No 3: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v24.i3.pp1814-1822

Abstract

Natural language processing (NLP) is a part of artificial intelligence that dissects, comprehends, and changes common dialects with computers in composed and spoken settings. At that point in scripts. Grammatical features part-of-speech (POS) allow marking the word as per its statement. We find in the literature that POS is used in a few dialects, in particular: French and English. This paper investigates the attention-based long short-term memory (LSTM) networks and simple recurrent neural network (RNN) in Tifinagh POS tagging when it is compared to conditional random fields (CRF) and decision tree. The attractiveness of LSTM networks is their strength in modeling long-distance dependencies. The experiment results show that LSTM networks perform better than RNN, CRF and decision tree that has a near performance.
Automatic translation from English to Amazigh using transformer learning Otman Maarouf; Abdelfatah Maarouf; Rachid El Ayachi; Mohamed Biniz
Indonesian Journal of Electrical Engineering and Computer Science Vol 34, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v34.i3.pp1924-1934

Abstract

Due to the lack of parallel data, to our knowledge, no study has been conducted on the Amazigh-English language pair, despite the numerous machine translation studies completed between major European language pairs. We decided to utilize the neural machine translation (NMT) method on a parallel corpus of 137,322 sentences. The attention-based encoder-decoder architecture is used to construct statistical machine translation (SMT) models based on Moses, as well as NMT models using long short-term memory (LSTM), gated recurrent units (GRU), and transformers. Various outcomes were obtained for each strategy after several simulations: 80.7% accuracy was achieved using the statistical approach, 85.2% with the GRU model, 87.9% with the LSTM model, and 91.37% with the transformer.
One level deep convolutional neural network for facial key points detection Abdelaali Benaiss; Rachid El Ayachi; Mohamed Biniz; Mustapha Oujaoura
Indonesian Journal of Electrical Engineering and Computer Science Vol 33, No 3: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v33.i3.pp1694-1704

Abstract

Facial landmark detection has a lot of applications in face recognition, face alignment, facial expression recognition, video surveillance and security systems. In the existing literature, there are multiple methods utilizing convolutional neural networks (CNNs) that address this problem in various ways. In many cases, the models use a tree-like structure of CNNs to achieve better results. This paper proposes a combination of three parallel deep convolutional neural networks (DCNNs) to estimate the accurate localization of each keypoint. The first one focuses on the whole face to outperform five points, including the eyes, nose, and mouth corners. The second one focuses on the eyes-nose parts to outperform three points, specifically the eyes and nose. The last one focuses on the nose-mouth parts to outperform three points, namely the nose and mouth corners. Further, we combine all outputs of the three DCNNs and take the average value of each detected key point as the final output. In the first step, we improvthe the parameter efficiency and accuracy of each DCNNs through a set of experiments using the labeled face parts in-the-wild database (LFPW) and the helen facial feature dataset (Helen). Then, we demonstrate that our approach yields more accurate estimations of facial key points than two state-of-the-art methods and commercial software in terms of accuracy.