J. J. Jamian
Universiti Teknologi Malaysia

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Netload-constrained Unit Commitment Considering Increasing Renewable Energy Penetration Levels: Impact of Generation Schedules and Operational Cost Saleh Y. Abujarad; M. W. Mustafa; J. J. Jamian; Abdirahman M. Abdilahi; N. Zareen
International Journal of Applied Power Engineering (IJAPE) Vol 7, No 1: April 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (387.234 KB) | DOI: 10.11591/ijape.v7.i1.pp87-98

Abstract

In the context of low carbon power systems, the penetration levels of Renewable Energy Sources (RES) are expected to increase dramatically. In this regard, this paper investigates the maximum RES penetration level constrained by net load while considering an inflexible Unit Commitment (UC) model. To solve the UC problem, an enhanced priority list (EPL) based method is developed. In the proposed method, the plants were activated sequentially based on the operational price. The system constraint violations were repeatedly corrected until all system constraints (such as net load and spinning reserves) were satisfied. The proposed EPL method was efficient to achieve a near optimal solution under high shares of RES. Furthermore, the research work investigates three different scenarios representing penetration levels of 10% solar-only, 14.5% wind-only and 27.5% mixture of both solar and wind. The impact of each penetration level on the system scheduling and operational cost were analyzed in detail. The analysis presented shows that a potential operational cost savings of 21.6 $/MW, 20 $/MW and 11.1 $/MW is feasible under each of the represented scenarios, respectively.
Minimizing harmonic distortion impact cause by CS using meta heuristic technique S. N. Syed Nasir; J. J. Jamian; M. W. Mustafa
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i4.12768

Abstract

Non-linear load in the distribution system has caused negative impact to its power quality especially on harmonic distortion. Charging Station (CS) is a non-linear load that widely promoted with the aim to support the continuous usage of Electric Vehicle (EV). This research is focusing on optimal placement and sizing of multiple passive filter to mitigate harmonic distortion due to CS usage at distribution system. There are 6 units of CS which being placed in low voltage buses which indirectly will inject harmonic to the system during charging. Power system harmonic flow, passive filter, CS, battery and the analysis will be model in MATLAB. Multi-objective function which are weight summation approach (WSA) and Pareto Front are used to assist meta heuristic technique which is Modified Lightning Search Algorithm (MLSA) to identify optimum location and sizing of passive filter based on improvement on propose five parameters. From the result, the optimal placements and sizing of passive filter able to reduce the maximum Total Harmonic Distortion (THD) for voltage, current and apparent losses respectively. Therefore, the propose method is suitable to reduce harmonic distortion as well as apparent losses at distribution system with present of CS.
Gbest Artificial Bee Colony for Non-convex Optimal Economic Dispatch in Power Generation M. N. Abdullah; A. F. A. Manan; J. J. Jamian; S. A. Jumaat; N. H. Radzi
Indonesian Journal of Electrical Engineering and Computer Science Vol 11, No 1: July 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v11.i1.pp187-194

Abstract

Non-convex Optimal Economic Dispatch (OED) problem is a complex optimization problem in power system operation that must be optimized economically to meet the power demand and system constraints. The non-convex OED is due to the generator characteristic such as prohibited operation zones, valve point effects (VPE) or multiple fuel options. This paper proposes a Gbest Artificial Bee Colony (GABC) algorithm based on global best particle (gbest) guided of Particle Swarm Optimization (PSO) in Artificial bee colony (ABC) algorithm for solving non-convex OED with VPE. In order to investigate the effectiveness and performance of GABC algorithm, the IEEE 14-bus 5 unit generators and IEEE 30-bus 6 unit generators test systems are considered. The comparison of optimal solution, convergence characteristic and robustness are also highlighted to reveal the advantages of GABC. Moreover, the optimal results obtained by proposed GABC are compared with other reported results of meta-heuristic algorithms. It found that the GABC capable to obtain lowest cost as compared to others. Thus, it has great potential to be implemented inĀ  different types of power system optimization problem.