Ebrahim Vatandoost
Department of Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Domination number of the non-commuting graph of finite groups Ebrahim Vatandoost; Masoumeh Khalili
Electronic Journal of Graph Theory and Applications (EJGTA) Vol 6, No 2 (2018): Electronic Journal of Graph Theory and Applications
Publisher : GTA Research Group, Univ. Newcastle, Indonesian Combinatorics Society and ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/ejgta.2018.6.2.3

Abstract

Let G be a non-abelian group. The non-commuting graph of group G, shown by ΓG, is a graph with the vertex set G \ Z(G), where Z(G) is the center of group G. Also two distinct vertices of a and b are adjacent whenever ab ≠ ba. A set S ⊆ V(Γ) of vertices in a graph Γ is a dominating set if every vertex v ∈ V(Γ) is an element of S or adjacent to an element of S. The domination number of a graph Γ denoted by γ(Γ), is the minimum size of a dominating set of Γ. </p><p>Here, we study some properties of the non-commuting graph of some finite groups. In this paper, we show that $\gamma(\Gamma_G)&lt;\frac{|G|-|Z(G)|}{2}.$ Also we charactrize all of groups G of order n with t = ∣Z(G)∣, in which $\gamma(\Gamma_{G})+\gamma(\overline{\Gamma}_{G})\in \{n-t+1,n-t,n-t-1,n-t-2\}.$