Suhadi Wido Saputro
Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

The geodetic domination number of comb product graphs Dimas Agus Fahrudin; Suhadi Wido Saputro
Electronic Journal of Graph Theory and Applications (EJGTA) Vol 8, No 2 (2020): Electronic Journal of Graph Theory and Applications
Publisher : GTA Research Group, Univ. Newcastle, Indonesian Combinatorics Society and ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/ejgta.2020.8.2.13

Abstract

A subset S of vertices in graph G is called a geodetic set if every vertex in V(G) \ S lies on a shortest path between two vertices in S. A subset S of vertices in G is called a dominating set if every vertex in V(G) \  S is adjacent to a vertex in S. The set S is called a geodetic dominating set if S is both geodetic and dominating sets. The geodetic domination number of G, denoted by γg(G), is the minimum cardinality of geodetic domination sets in G. The comb product of connected graphs G and H at vertex o ∈ V(H), denoted by  G ∇o H, is a graph obtained by taking one copy of G and |V(G)| copies of H and identifying the ith copy of H at the vertex o to the ith vertex of G. In this paper, we determine an exact value of γg(G ∇o H) for any connected graphs G and H.
The total vertex irregularity strength of symmetric cubic graphs of the Foster's Census Rika Yanti; Gregory Benedict Tanidi; Suhadi Wido Saputro; Edy Tri Baskoro
Indonesian Journal of Combinatorics Vol 6, No 2 (2022)
Publisher : Indonesian Combinatorial Society (InaCombS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/ijc.2022.6.2.3

Abstract

Foster (1932) performed a mathematical census for all connected symmetric cubic (trivalent) graphs of order n with n ≤ 512. This census then was continued by Conder et al. (2006) and they obtained the complete list of all connected symmetric cubic graphs with order n ≤ 768. In this paper, we determine the total vertex irregularity strength of such graphs obtained by Foster. As a result, all the values of the total vertex irregularity strengths of the symmetric cubic graphs of order n from Foster census strengthen the conjecture stated by Nurdin, Baskoro, Gaos & Salman (2010), namely ⌈(n+3)/4⌉.