Ayushi Dhama
Centre for Mathematical Sciences, Banasthali University, Banasthali-304 022 Rajasthan

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Negation switching invariant signed graphs Deepa Sinha; Ayushi Dhama
Electronic Journal of Graph Theory and Applications (EJGTA) Vol 2, No 1 (2014): Electronic Journal of Graph Theory and Applications
Publisher : GTA Research Group, Univ. Newcastle, Indonesian Combinatorics Society and ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/ejgta.2013.2.1.3

Abstract

A signed graph (or, $sigraph$ in short) is a graph G in which each edge x carries a value $\sigma(x) \in \{-, +\}$ called its sign. Given a sigraph S, the negation $\eta(S)$ of the sigraph S is a sigraph obtained from S by reversing the sign of every edge of S. Two sigraphs $S_{1}$ and $S_{2}$ on the same underlying graph are switching equivalent if it is possible to assign signs `+' (`plus') or `-' (`minus') to vertices of $S_{1}$ such that by reversing the sign of each of its edges that has received opposite signs at its ends, one obtains $S_{2}$. In this paper, we characterize sigraphs which are negation switching invariant and also see for what sigraphs, S and $\eta (S)$ are signed isomorphic.