Irene Heinrich
Technische Universität Kaiserslautern

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Cycle decompositions and constructive characterizations Irene Heinrich; Manuel Streicher
Electronic Journal of Graph Theory and Applications (EJGTA) Vol 7, No 2 (2019): Electronic Journal of Graph Theory and Applications
Publisher : GTA Research Group, Univ. Newcastle, Indonesian Combinatorics Society and ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/ejgta.2019.7.2.15

Abstract

Decomposing an Eulerian graph into a minimum respectively maximum number of edge disjoint cycles is an NP-complete problem. We prove that an Eulerian graph decomposes into a unique number of cycles if and only if it does not contain two edge disjoint cycles sharing three or more vertices. To this end, we discuss the interplay of three binary graph operators leading to novel constructive characterizations of two subclasses of Eulerian graphs. This enables us to present a polynomial-time algorithm which decides whether the number of cycles in a cycle decomposition of a given Eulerian graph is unique.