Hilda Assiyatun
Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Ramsey minimal graphs for a pair of a cycle on four vertices and an arbitrary star Maya Nabila; Hilda Assiyatun; Edy Tri Baskoro
Electronic Journal of Graph Theory and Applications (EJGTA) Vol 10, No 1 (2022): Electronic Journal of Graph Theory and Applications
Publisher : GTA Research Group, Univ. Newcastle, Indonesian Combinatorics Society and ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/ejgta.2022.10.1.20

Abstract

Let F, G and H be simple graphs. The notation F → (G, H) means that for any red-blue coloring on the edges of graph F, there exists either a red copy of G or a blue copy of H. A graph F is called a Ramsey (G, H)-minimal graph if it satisfies two conditions: (i) F → (G, H) and (ii) F − e ↛ (G, H) for any edge e of F. In this paper, we give some finite and infinite classes of Ramsey (C4, K1, n)-minimal graphs for any n ≥ 3.
On Ramsey (C4, K1, n)-minimal graphs Hilda Assiyatun; Maya Nabila; Edy Tri Baskoro
Electronic Journal of Graph Theory and Applications (EJGTA) Vol 11, No 1 (2023): Electronic Journal of Graph Theory and Applications
Publisher : GTA Research Group, Univ. Newcastle, Indonesian Combinatorics Society and ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/ejgta.2023.11.1.12

Abstract

Let F, G and H be any simple graphs. The notation F → (G, H) means for any red-blue coloring on the edges of graph F, there exists either a red copy of G or a blue copy of H. If F → (G, H), then graph F is called a Ramsey graph for (G, H). Additionally, if the graph F satisfies that F − e ↛ (G, H) for any edge e of F, then graph F is called a Ramsey (G, H)-minimal. The set of all Ramsey (G, H)-minimal graphs is denoted by ℛ(G, H). In this paper, we construct a new class of Ramsey (C4, K1, n)-minimal graphs.