Manhal Alhilali
Universiti Teknologi Malaysia

Published : 8 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

A methodology for precise estimation of rain attenuation on terrestrial millimetre wave links from raindrop size distribution measurements Manhal Alhilali; Mustafa Ghanim; Jafri Din; Hong Yin Lam
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 5: October 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i5.12798

Abstract

Attenuation by atmospheric rain is the most significant impairment in millimetre wave frequencies (mmWave). Modern instruments could provide detailed measurements of rain, such as raindrop size distributions (DSDs). The analysis of DSDs could estimate their effects on past or co-located links measurements. This study presents propagation analysis in the mmWave bands using measurements of two terrestrial links working at 26 and 38 GHz carried out in Johor, Malaysia. Statistics obtained have been analysed in detail to extract any excess attenuation. The DSDs provided by a disdrometer have been used to estimate rain attenuation. The derived results show that the estimation can provide reasonable accuracy after extracting the wet antenna effects and having the advantage of the availability of measurements from various types of equipment.
Rain attenuation statistics for mobile satellite communications estimated from radar measurements in Malaysia Mohammad Ibrahim Abozeed; Manhal Alhilali; Lam Hong Yin; Jafri Din
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 3: June 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i3.12040

Abstract

Mobile satellite communications will play a significant role in the next 5th generation mobile services. The use of high-frequency bands will be the enabler of this advancement. However, at high frequencies, excess rain attenuation causes severe signal losses and presents a major threat for the system availability, especially in the tropical region. To that end, this study presents the rain attenuation impact on mobile satellite communications estimated using long-term radar measurements in Malaysia, by exploiting the horizontal structure of rain from the radar database and simulating inner-city and highway mobile terminals scenarios. Additionally, a scaling factor was presented to scale available fixed satellite terminals measurements to mobile terminals operating at the same locality under similar conditions. In comparison to the available link measurements, the radar database was reliable enough to provide highly accurate estimates. In all simulation scenarios, the mobile terminal will depart the rainy area soon enough and experience lower attenuation statistics in comparison with the fixed terminal. The provided results will help determine the overall future system performance, especially in tropical regions.
Tropospheric Scintillation with Rain Attenuation of Ku Band at Tropical Region Ibtihal F El-shami; Lam Hong Yin; Jafri Din; Ali l Elgayar; Manhal Alhilali
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 5: October 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i5.10002

Abstract

Tropospheric scintillation can become a significant impairment in satellite communication systems, especially in tropical regions with frequencies higher than 10 GHz, the attenuation is dramatically affecting the scintillation. This work concentrates on those aspects in equatorial Johor Bahru, Malaysia, based on a one-year Ku-band propagation measurement campaign, utilizing the equipment of Direct Broadcast Receiver (DBR) and Automatic Weather Station (AWS). This study investigates the relationship between wet scintillation and rain attenuation using experimental measurement and concentrate on the probability density function (PDF) of different scintillation parameters. From the results, it is concluded that wet scintillation intensity increases with rain attenuation. Thus, the relationship can be phrased by linear equations or power-law. The PDFs of wet scintillation intensity, adapted to a given rain attenuation level, are found lognormally distributed, leading to selection of method for determining the relation between conditional PDFs and rain attenuation.
Comparison of Raindrop Size Distribution Characteristics Across the Southeast Asia Region Manhal Alhilali; Lam Hong Yin; Jafri Din
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 6: December 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i6.10091

Abstract

Satellite communication requires reliable estimates of the channel characteristics, especially with the future use of higher frequencies. Regardless of the rain rate, the shape of rain drop size distribution (DSD) start to considerably effect the specific attenuation. In this study DSDs are studied using ground-based two-dimensional video disdrometer measurements taken from Johor, Malaysia as well as two similar datasets from Gan and Manus, two equatorial islands. Integral rain parameters are studied to explain DSD variations across the Southeast Asia region. Slightly higher raindrop concentrations and larger diameters were observed in Johor than in Gan or Manus, which is due to Johor being affected by not only oceanic rain- fall but land rainfall as well. The measured rainfall was classified into convective and stratiform precipitation types; the results showed that the Southeast Asia region is dominated by convective rain in terms of accumulated rainfall amount, but stratiform rain occurred more frequently. Further, seasonal variations observed in Johor were insignificant and the DSD variation was mostly due to changes in percentage occurrence of the precipitation types for each monsoon season.