Lam Hong Yin
Universiti Tun Hussein Onn Malaysia

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Rain attenuation statistics for mobile satellite communications estimated from radar measurements in Malaysia Mohammad Ibrahim Abozeed; Manhal Alhilali; Lam Hong Yin; Jafri Din
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 3: June 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i3.12040

Abstract

Mobile satellite communications will play a significant role in the next 5th generation mobile services. The use of high-frequency bands will be the enabler of this advancement. However, at high frequencies, excess rain attenuation causes severe signal losses and presents a major threat for the system availability, especially in the tropical region. To that end, this study presents the rain attenuation impact on mobile satellite communications estimated using long-term radar measurements in Malaysia, by exploiting the horizontal structure of rain from the radar database and simulating inner-city and highway mobile terminals scenarios. Additionally, a scaling factor was presented to scale available fixed satellite terminals measurements to mobile terminals operating at the same locality under similar conditions. In comparison to the available link measurements, the radar database was reliable enough to provide highly accurate estimates. In all simulation scenarios, the mobile terminal will depart the rainy area soon enough and experience lower attenuation statistics in comparison with the fixed terminal. The provided results will help determine the overall future system performance, especially in tropical regions.
Comparison of Raindrop Size Distribution Characteristics Across the Southeast Asia Region Manhal Alhilali; Lam Hong Yin; Jafri Din
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 6: December 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i6.10091

Abstract

Satellite communication requires reliable estimates of the channel characteristics, especially with the future use of higher frequencies. Regardless of the rain rate, the shape of rain drop size distribution (DSD) start to considerably effect the specific attenuation. In this study DSDs are studied using ground-based two-dimensional video disdrometer measurements taken from Johor, Malaysia as well as two similar datasets from Gan and Manus, two equatorial islands. Integral rain parameters are studied to explain DSD variations across the Southeast Asia region. Slightly higher raindrop concentrations and larger diameters were observed in Johor than in Gan or Manus, which is due to Johor being affected by not only oceanic rain- fall but land rainfall as well. The measured rainfall was classified into convective and stratiform precipitation types; the results showed that the Southeast Asia region is dominated by convective rain in terms of accumulated rainfall amount, but stratiform rain occurred more frequently. Further, seasonal variations observed in Johor were insignificant and the DSD variation was mostly due to changes in percentage occurrence of the precipitation types for each monsoon season.
Characterization of concurrent ku band tropospheric scintillation and rain attenuation in Malaysia Ibtihal Fawzi Elshami; Jafri Din; Lam Hong Yin; Ali I Elgayar
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 2: August 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i2.pp956-961

Abstract

Tropospheric scintillation in satellite communication systems operating at frequencies over 10 GHz is a significant impairment, especially in tropical regions, as attenuation affects scintillation dramatically. This work concentrates on tropospheric scintillation in equatorial Johor Bahru, Malaysia, based on a one-year Ku-band propagation measurement study utilising a direct broadcast receiver and an automatic weather station. This study aimed to investigate the relationship between wet scintillation and rain attenuation using experimental measurements. The power spectral analysis has been carried out to determine required cut-off frequency of filtering to separate out rain attenuation and scintillation effects. The results can provide significant information on the fluctuations of wet scintillation at Ku-band earth space link in tropical regions.
Rain attenuation in broadband satellite service and worst month analysis Idrissa Abubakar; Jafri Bin Din; Lam Hong Yin; Manhal Alhilali
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i3.pp1443-1451

Abstract

Satellite link design, link margin and services at lower bands of satellite spectrum has been facing the challenges of meeting the demands for higher bandwidth requirements. Satellite operators and service providers are been compelled to migrate to the use of higher frequencies above 10 GHz. These higher frequencies were discovered to be vulnerable to atmospheric degradation creating the challenge of service availability especially for tropical rain zones with higher rainfall intensities and longer rain event durations. This study strive to evaluate the profile of rainfall and the monthly and annual variability to improve the design parameters of satellite propagation. Two yeas rainfall measurement campaign was conducted in Abuja at Nigcomsat-1R ground station with a view to understanding the characteristics of Abuja rain. The location of the site is on lat. 9.06o N and lon. 7.48o E. Tipping bucket rain gauge was used for point rain rate and 1.8 m VSAT antenna was installed to monitor the rain induced attenuation on satellite broadband signal. The results shows a huge variability between month to month as well as annual average between 2016 and 2017. The performance of broadband satellite service was found to largely to depend on the quality of the carrier power above the system noise rather than bandwidth capacity or the receive signal level while higher attenuations are associated with higher rain intensities and the slant path effects.