Afnizanfaizal Abdullah
Universiti Teknologi Malaysia

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Prediction of Bioprocess Production Using Deep Neural Network Method Amirah Baharin; Afnizanfaizal Abdullah; Siti Noorain Mohmad Yousoff
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 15, No 2: June 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v15i2.6124

Abstract

Deep learning enhanced the state-of-the-art methods in genomics allows it to be used in analysing the biological data with high prediction. The training process of neural network with several hidden layers which has been facilitated by deep learning has been subjected into increased interest in achieving remarkable results in various fields. Thus, the extraction of bioprocess production can be implemented by pathway prediction in genomic metabolic network in eschericia coli. As metabolic engineering involves the manipulation of genes which have the potential to increase the yield of metabolite production. A mathematical model of this network is the foundation for the development of computational procedure that directs genetic manipulations that would eventually lead to optimized bioprocess production. Due to the ability of deep learning to be well suited in terms of genomics, modelling for biological network can be implemented. Each layer reveal the insight of biological network which enable pathway analysis to be implemented in order to extract the target bioprocess production. In this study, deep neural network has been to identify any set of gene deletion models that offers optimal results in xylitol production and its growth yield. 
Co-clustering algorithm for the identification of cancer subtypes from gene expression data Logenthiran Machap; Afnizanfaizal Abdullah; Zuraini Ali Shah
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i4.12773

Abstract

Cancer has been classified as a heterogeneous genetic disease comprising various different subtypes based on gene expression data. Early stages of diagnosis and prognosis for cancer type have become an essential requirement in cancer informatics research because it is helpful for the clinical treatment of patients. Besides this, gene network interaction which is the significant in order to understand the cellular and progressive mechanisms of cancer has been barely considered in current research. Hence, applications of machine learning methods become an important area for researchers to explore in order to categorize cancer genes into high and low risk groups or subtypes. Presently co-clustering is an extensively used data mining technique for analyzing gene expression data. This paper presents an improved network assisted co-clustering for the identification of cancer subtypes (iNCIS) where it combines gene network information with gene expression data to obtain co-clusters. The effectiveness of iNCIS was evaluated on large-scale Breast Cancer (BRCA) and Glioblastoma Multiforme (GBM). This weighted co-clustering approach in iNCIS delivers a distinctive result to integrate gene network into the clustering procedure.