Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Development of control system for quadrotor unmanned aerial vehicle using LoRa wireless and GPS tracking Teddy Surya Gunawan; Wan Athereah Yahya; Erwin Sulaemen; Mira Kartiwi; Zuriati Janin
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 5: October 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i5.16716

Abstract

In the past decades, there has been a growing interest in unmanned aerial vehicles (UAVs) for educational, research, business, and military purposes. The most critical data for a flight system is the telemetry data from the GPS and wireless transmitter and also from the gyroscope and accelerometer.  The objective of this paper is to develop a control system for UAV using long-range wireless communication and GPS. First, Matlab simulation was conducted to obtain an optimum PID gains controller. Then LoRa wireless was evaluated during clear and rainy days. Static and dynamic points measurement was conducted to validate and optimize GPS accuracy. GeoMapping in Matlab and Google GPS GeoPlanner were then used to analyze the traveled UAV flight path.
Development of video-based emotion recognition using deep learning with Google Colab Teddy Surya Gunawan; Arselan Ashraf; Bob Subhan Riza; Edy Victor Haryanto; Rika Rosnelly; Mira Kartiwi; Zuriati Janin
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 5: October 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i5.16717

Abstract

Emotion recognition using images, videos, or speech as input is considered as a hot topic in the field of research over some years. With the introduction of deep learning techniques, e.g., convolutional neural networks (CNN), applied in emotion recognition, has produced promising results. Human facial expressions are considered as critical components in understanding one's emotions. This paper sheds light on recognizing the emotions using deep learning techniques from the videos. The methodology of the recognition process, along with its description, is provided in this paper. Some of the video-based datasets used in many scholarly works are also examined. Results obtained from different emotion recognition models are presented along with their performance parameters. An experiment was carried out on the fer2013 dataset in Google Colab for depression detection, which came out to be 97% accurate on the training set and 57.4% accurate on the testing set.