Logenthiran Machap
Universiti Teknologi Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Co-clustering algorithm for the identification of cancer subtypes from gene expression data Logenthiran Machap; Afnizanfaizal Abdullah; Zuraini Ali Shah
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i4.12773

Abstract

Cancer has been classified as a heterogeneous genetic disease comprising various different subtypes based on gene expression data. Early stages of diagnosis and prognosis for cancer type have become an essential requirement in cancer informatics research because it is helpful for the clinical treatment of patients. Besides this, gene network interaction which is the significant in order to understand the cellular and progressive mechanisms of cancer has been barely considered in current research. Hence, applications of machine learning methods become an important area for researchers to explore in order to categorize cancer genes into high and low risk groups or subtypes. Presently co-clustering is an extensively used data mining technique for analyzing gene expression data. This paper presents an improved network assisted co-clustering for the identification of cancer subtypes (iNCIS) where it combines gene network information with gene expression data to obtain co-clusters. The effectiveness of iNCIS was evaluated on large-scale Breast Cancer (BRCA) and Glioblastoma Multiforme (GBM). This weighted co-clustering approach in iNCIS delivers a distinctive result to integrate gene network into the clustering procedure.
Functional analysis of cancer gene subtype from co-clustering and classification Logenthiran Machap; Afnizanfaizal Abdullah
Indonesian Journal of Electrical Engineering and Computer Science Vol 18, No 1: April 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v18.i1.pp343-350

Abstract

Cancer is a heterogeneity genetic disease with huge phenotypic alterations among dissimilar cancers types or even between same cancer types. Recent expansions of genome-wide profiling technologies offer a chance to explore molecular changes variations throughout advancement of cancer. Therefore, various statistical and machine learning algorithms have been designed and developed for the handling and interpretation of high-throughput microarray molecular data. Discovery of molecular subtypes studies have permitted the cancer to be allocated into similar groups that are deliberated to port similar molecular and clinical characteristics. Thus, the main objective of this research is to discover cancer gene subtypes and classify genes to obtain higher accuracy. In particular improved co-clustering algorithm used to discover cancer subtypes. And then supervised infinite feature selection gene selection method was combined with multi class SVM for classification of selected genes and further biological analysis. The analysis on breast cancer and glioblastoma multiforme evidences that top genes involved in cancer and the pathways present in both cancer top genes. The functional analysis is useful in medical and pharmaceutical field for cancer diagnosis and prognosis.