Mochammad Hannats Hanafi Ichsan
University of Brawijaya

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Reference broadcast synchronization and time division multiple access implementation on WSN Sabriansyah Rizqika Akbar; Mochammad Hannats Hanafi Ichsan; Aulia Arif Darmawan
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 1: February 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i1.11615

Abstract

Various kinds of technology have been developed to assist obtain information. One of them is a Wireless Sensor Network (WSN). WSN is a wireless network consisting of multiple nodes connected wirelessly. WSN nodes on a device have small resources in the form of batteries. The main problem which owned by WSN was in the data collection process possible collisions data, there are nodes that transmit data at the same time. Time Division Multiple Access (TDMA) was able to provide data on the delivery schedule of each node. So no nodes that transmit data at the same time. But in order to apply the system each node should have equal time. One method that able to provide equalization time was Reference Broadcast Synchronization (RBS). This method synchronizes multiple nodes that have different local time (on the receiver) with the help of node that provides synchronization marks (beacons). Hence this each node was able to transmit data in accordance with the TDMA method that has been implemented. In addition time synchronization performed using RBS give equal time with accuracy up to microseconds. That case certainly makes the WSN node able to provide accurate information to guarantee the absence of errors due to data collisions. This research succesfully sending data delivery schedule by time slots that provided by RBS and time synchronization by TDMA average time delay 2285.9 microseconds.
WSN performance based on node placement by genetic algorithm at smart home environment Mochammad Hannats Hanafi Ichsan; Wijaya Kurniawan; Gembong Edhi Setyawan; Irma Asri Kartika Sandy
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 1: February 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i1.11621

Abstract

Wireless sensor connectivity is one of several factors that determines the communication reliability of each node. The placement of the node depends on the area that covered by wireless coverage area, so the node placement should be optimally placed. But the other aspect is the sensor coverage area. Sensor coverage area sometimes could be different with wireless sensor coverage area. Based on that situation, it needs to optimize that situation. Genetic Algorithm is an algorithm that utilizes a heuristic approach that uses biological mechanism evolution. It used to evolution the best position of Sensor Node based on Wireless and Sensor coverage area. After the position of each node generated by Genetic Algorithm, it still needs to evaluate the wireless sensor node performance. The performance indicates that the genetic algorithm can be used to determine sensor node placement in the smart home environment. The smart home environment used to monitor event at the house such as wildfire. In this research used Quality of Services (QoS) to measure wireless sensor performance. The experimental testing scenario will be used to place several nodes that generated. The QoS performed systems reliability that produced based on 3, 4 and 5 testing nodes, the minimum and maximum of each: delay is 6.21 and 8.74 milliseconds, jitter is 0.11 and 1.59 Hz and throughput is 68.83 and 90.49 bps. Based on ETSI classification, the performance of sensor node placement is Good and acceptable in real-time systems.