Yudy Purnama
Bina Nusantara University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Vibration-Based Damaged Road Classification Using Artificial Neural Network Yudy Purnama; Fergyanto E. Gunawan
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 5: October 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i5.7574

Abstract

It is necessary to develop an automated method to detect damaged road because manually monitoring the road condition is not practical. Many previous studies had demonstrated that the vibration-based technique has potential to detect damages on roads. This research explores the potential use of Artificial Neural Network (ANN) for detecting road anomalies based on vehicle accelerometer data. The vehicle is equipped with a smart-phone that has a 3D accelerometer and geo-location sensors. Then, the vehicle is used to scan road network having several road anomalies, such as, potholes, speedbump, and expansion joints. An ANN model consisting of three layers is developed to classify the road anomalies. The first layer is the input layer containing six neurons. The numbers of neurons in the hidden layer is varied between one and ten neurons, and its optimal number is sought numerically. The prediction accuracy of 84.9% is obtained by using three neurons in conjunction with the maximum acceleration data in x, y, and z-axis. The accuracy increases slightly to 86.5%, 85.2%, and 85.9% when the dominant frequencies in x, y, and z-axis, respectively, are taken into account beside the previous data.
Wavelet-Based Color Histogram on Content-Based Image Retrieval Alexander Alexander; Jeklin Harefa; Yudy Purnama; Harvianto Harvianto
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 3: June 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i3.7771

Abstract

The growth of image databases in many domains, including fashion, biometric, graphic design, architecture, etc. has increased rapidly. Content Based Image Retrieval System (CBIR) is a technique used for finding relevant images from those huge and unannotated image databases based on low-level features of the query images. In this study, an attempt to employ 2nd level Wavelet Based Color Histogram (WBCH) on a CBIR system is proposed. Image database used in this study are taken from Wang’s image database containing 1000 color images. The experiment results show that 2nd level WBCH gives better precision (0.777) than the other methods, including 1st level WBCH, Color Histogram, Color Co-occurrence Matrix, and Wavelet texture feature. It can be concluded that the 2nd Level of WBCH can be applied to CBIR system.