Claim Missing Document
Check
Articles

Found 2 Documents
Search

ANALISIS SIFAT HIDROFOBIK PERMUKAAN HDPE BERDASARKAN NILAI TOTAL HARMONIC DISTORTION Abdul Syakur; Hermawan Hermawan; Sarjiya Sarjiya; Hamzah Berahim
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 7, No 2: August 2009
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v7i2.583

Abstract

Polymer material has been developed to replace the porcelain insulator material and glass. When it is used as outdoor insulator, environmental conditions have a significant influence to the value of surface discharge current, especially for the coastal area and industry. Salt, dust and chemicals contaminant are suspected as the causes of initial current of surface discharge and the insulator surface degradation which lead to a flashover. To analyze the performance of the insulator surface when the leakage current occurs, the Total Harmonic Distortion (THD) is needed to be determined. The value of THD leakage current indicates the hydrophobic characteristic of surface material. This paper analyzes the results of leakage current measurement in laboratory-scale based on IEC 587:1986 with Inclined-Plane Tracking (IPT) method to the High Density Polyethylene (HDPE) polymer material which is provided in smooth and rough surface. The testing voltage is 50 Hz AC. Data of leakage current magnitude values cover its maximum average as a function of time and the result of FFT to the wave form of the leakage current. As the result, the value of percentage THD decrease as the function of time. The smooth surface material has THD value 43.42% and the rough surface has 15.89%.
Analisis Degradasi Permukaan Bahan Isolasi Resin Epoksi dengan Pengisi Pasir Pantai yang Mengandung Banyak Kalsium Moh Toni Prasetyo; Hamzah Berahim; T. Haryono
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 1 No 3: Agustus 2012
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (458.534 KB)

Abstract

Insulation materials that commonly used in air insulation, which, is operated at high voltage, are the porcelain, glass, and polymer materials. One of the insulating polymer materials that are used is epoxy resin because it has several advantages compared to porcelain and glass. However, this insulation material has a shortage of aging/degradation of the surface (surface-aging) due to environmental pollution. Environmental pollution can cause insulation coated with dirt and chemicals in the long time.Material that was used in this research was epoxy resin polymer isolation using of comparison values (base material diglycidyl ether of bisphenol-A (DGEBA) : hardener material or curing agent metaphenylene diamine (MPDA)) were 1:1, with the increase of silane and coastal sand as filler by the value of 10%, 20%, 30%, 40%, and 50%, sample size was 120 x 50 mm.Research was done in laboratory according to standard IEC 587: 1984. High voltage electrodes were connected to high voltage AC generator 3.5 KV, and NH4CI contaminants flowing on insulator surface of 0.3 ml / min from high voltage electrode. The ground electrode was connected to oscilloscope for measuring the leakage current. In this study, the effect of variation in stoichiometry to the hydrophobic contact angle value, leakage current waveforms, and surface degradation caused by erosion and tracking processes and tracking time were analyzed.From the results of the research, it was obtained that the epoxy resin that was used in this research are categorized as hydrofobik and partially wetted. The increase concentration of silane dan coastal sand as filler caused the increase in contact angle which meant the increase in surface insulation resistance, so that leakage currents flew on the surface insulating material not easily. The increase in concentration of silane dan coastal sand as filler retarded the carbon growth the surface of insulating material. This indicated that the increase in filler concentration slow down the aging or the degradation decreasing on the surface of insulating material. Concentration value of filler that had the optimal performance of the tracking process and erosion was 40%.