Ahmed Khazal Younis
Northern Technical University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Detection of brain stroke in the MRI image using FPGA Dheyaa Alhelal; Ahmed Khazal Younis; Ruaa H. Ali Al-Mallah
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 4: August 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i4.18988

Abstract

One of the most important difficulties which doctors face in diagnosing is the analysis and diagnosis of brain stroke in magnetic resonance imaging (MRI) images. Brain stroke is the interruption of blood flow to parts of the brain that causes cell death. To make the diagnosis easier for doctors, many researchers have treated MRI images with some filters by using Matlab program to improve the images and make them more obvious to facilitate diagnosis by doctors. This paper introduces a digital system using hardware concepts to clarify the brain stroke in MRI image. Field programmable gate arrays (FPGA) is used to implement the system which is divided into four phases: preprocessing, adjust image, median filter, and morphological filters alternately. The entire system has been implemented based on Zynq FPGA evaluation board. The design has been tested on two MRI images and the results are compared with the Matlab to determine the efficiency of the proposed system. The proposed hardware system has achieved an overall good accuracy compared to Matlab where it ranged between 90.00% and 99.48%.
Hardware implementation of Sobel edge detection system for blood cells images-based field programmable gate array Ahmed Khazal Younis; Basma MohammedKamal Younis; Mohammed Sabah Jarjees
Indonesian Journal of Electrical Engineering and Computer Science Vol 26, No 1: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v26.i1.pp86-95

Abstract

The microscopic-blood image has been used to diagnose various diseases according to the morphological specifications of red and white blood cells. However, the manual analysis and procedures are not accurate due to the human error. Therefore, several studies conducted to find new techniques to perform this analysis using computer algorithms. The complexity of these algorithms led to thinking in simpler ways or to the hardware solutions. On the other hand, edge detection is a mathematical procedure that play an essential role in the field of medical image processing. It is considered as one of the foundations' processes for other procedures, such as the segmentation and the classification of the image. The Sobel filter is one of the conventional methods that is used to perform the edge detection process. It is based on finding the local contrast for the level of intensity of the image. This paper presents a proposed and a new method for detecting the edges of cells in the microscopic blood images using Sobel filter and its hardware implementation on the field programmable gate array (FPGA) chip. Three different techniques are proposed: MATLAB, OpenCV standard code, and FPGA customize code which give the best visual results, minimum timing results than the others.