K. B. Low
Universiti Teknologi Malaysia

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Human Re-identification with Global and Local Siamese Convolution Neural Network K. B. Low; U. U. Sheikh
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 15, No 2: June 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v15i2.6121

Abstract

Human re-identification is an important task in surveillance system to determine whether the same human re-appears in multiple cameras with disjoint views. Mostly, appearance based approaches are used to perform human re-identification task because they are less constrained than biometric based approaches. Most of the research works apply hand-crafted feature extractors and then simple matching methods are used. However, designing a robust and stable feature requires expert knowledge and takes time to tune the features. In this paper, we propose a global and local structure of Siamese Convolution Neural Network which automatically extracts features from input images to perform human re-identification task. Besides, most of the current human re-identification task in single-shot approaches do not consider occlusion issue due to lack of tracking information. Therefore, we apply a decision fusion technique to combine global and local features for occlusion cases in single-shot approaches.