Ye Xiaoping
Lishui University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Back-stepping Control of Free-Floating Space Robot based on Adaptive Neural Network Wang Cao; Lin Senhai; Ye Xiaoping; Jiang Jie; Zhang Wenhui
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 15, No 1: March 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v15i1.4588

Abstract

Trajectory tracking control problems of the free-floating space robot are considered by the paper, back-stepping control method based on adaptive neural network is put forward. The complex system is decomposed into several simple sub-systems. The control laws are designed by derived, so that closed-loop stability can be obtained by each subsystem; Because of the influence of interference and the measurement level limitation, accurate mathematical model is difficult to be obtained. Neural network controller of good nonlinear approximation ability is designed to compensate the uncertainty of system model. Adaptive learning laws are designed to ensure that weights can be adjusted online real-time. The system uniformly ultimately bounded (UUB) is proved based on the Lyapunov theory. Simulation experiments show that the control method can fast track the desired trajectory, and has a good application value for space robotic manipulators with uncertainty.
Adaptive Control of Space Robot Manipulators with Task Space Base on Neural Network Zhou Shuhua; Ye Xiaoping; Ji Xiaoming; Zhang Wenhui
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 12, No 2: June 2014
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v12i2.72

Abstract

As are considered, the body posture is controlled and position cannot control, space manipulator system model is difficult to be set up because of disturbance and model uncertainty. An adaptive control strategy based on neural network is put forward. Neural network on-line modeling technology is used to approximate the system uncertain model, and the strategy avoids solving the inverse Jacobi matrix, neural network approximation error and external bounded disturbance are eliminated by variable structure control controller. Inverse dynamic model of the control strategy does not need to be estimated, also do not need to take the training process, globally asymptotically stable of the closed-loop system is proved based on the lyapunov theory. The simulation results show that the designed controller can achieve high control precision has the important value of engineering application.