Chenghua Li
South-Central University for Nationalities

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Unscented Particle Filtering Algorithm for Optical-fiber Sensing Intrusion Localization Based on Particle Swarm Optimization Hua Zhang; Xiaoping Jiang; Chenghua Li
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 13, No 1: March 2015
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v13i1.1272

Abstract

To improve the convergence and precision of intrusion localization in optical-fiber sensing perimeter protection applications, we present an algorithm based on an unscented particle filter (UPF). The algorithm employs particle swarm optimization (PSO) to mitigate the sample degeneracy and impoverishment problem of the particle filter. By comparing the present fitness value of particles with the optimum fitness value of the objective function, PSO moves particles with insignificant UPF weights towards the higher likelihood region and determines the optimal positions for particles with larger weights. The particles with larger weights results in a new sample set with a more balanced distribution between the priors and the likelihood. Simulations demonstrate that the algorithm speeds up convergence and improves the precision of intrusion localization.