Mohd Ariffanan Mohd Basri
Universiti Teknologi Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Finite Element Simulation of Microfluidic Biochip for High Throughput Hydrodynamic Single Cell Trapping Amelia Ahmad Khalili; Mohd Ariffanan Mohd Basri; Mohd Azhar Abdul Razak
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 2: April 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i2.9023

Abstract

In this paper, a microfluidic device capable of trapping a single cell in a high throughput manner and at high trapping efficiency is designed simply through a concept of hydrodynamic manipulation. The microfluidic device is designed with a series of trap and bypass microchannel structures for trapping individual cells without the need for microwell, robotic equipment, external electric force or surface modification. In order to investigate the single cell trapping efficiency, a finite element model of the proposed design has been developed using ABAQUS-FEA software. Based on the simulation, the geometrical parameters and fluid velocity which affect the single cell trapping are extensively optimized. After optimization of the trap and bypass microchannel structures via simulations, a single cell can be trapped at a desired location efficiently.
Self-Tuning PID Controller for Quadcopter using Fuzzy Logic A'dilah Baharuddin; Mohd Ariffanan Mohd Basri
International Journal of Robotics and Control Systems Vol 3, No 4 (2023)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v3i4.1127

Abstract

Tracking has become a necessary feature of a drone. This is due to the demand for drones, especially quadcopters, to be used for activities such as surveillance, monitoring, and filming. It is crucial to ensure the quadcopters perform the tracking with stable flight. Despite the advantages of having VTOL ability and great maneuverability, quadcopters require an effective controller to overcome their under-actuation and instability behavior. Even though a PID controller is commonly used and promising with its simple mechanism, it requires very proper tuning to ensure the stability of the system is not affected. In this paper, a simple Fuzzy algorithm is proposed to be incorporated into a PID controller to form a self-tuning Fuzzy PID controller. The Fuzzy logic controller works as the self-adjuster to the PID parameters. A mathematical model of the DJI Tello quadcopter is derived with position and attitude control loops that are designed to track a variety of trajectories with stable flight. The proposed method uses a simple architecture where the ranges of PID parameters are used as scaling factors for Fuzzy controller outputs. The results of the simulations show the tracking error performance metrics, which are IAE, ISE, and RMSE, are smaller compared to the values of the PID controller. Beyond its impact on quadcopter control, the proposed self-tuning approach holds promise for broader applications in nonlinear systems.