Vinh Truong Hoang
Ho Chi Minh City Open University

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Vehicle logo recognition using histograms of oriented gradient descriptor and sparsity score Kittikhun Meethongjan; Thongchai Surinwarangkoon; Vinh Truong Hoang
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 6: December 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i6.16133

Abstract

Most of vehicle have the similar structures and designs. It is extremely complicated and difficult to identify and classify vehicle brands based on their structure and shape. As we requirea quick and reliable response, so vehicle logos are an alternative method of determining the type of a vehicle. In this paper, we propose a method for vehicle logo recognition based on feature  selection method in a hybrid way. Vehicle logo images are first characterized by histograms of oriented gradient descriptors and the final features vector are then applied feature selection method to reduce the irrelevant information. Moreover, we release a new benchmark dataset for vehicle logo recognition and retrieval task namely, VLR-40. The experimental results are evaluated on this database which show the efficiency of the proposed approach.
Rice seed image classification based on HOG descriptor with missing values imputation Huy Nguyen-Quoc; Vinh Truong Hoang
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 4: August 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i4.14069

Abstract

Rice is a primary source of food consumed by almost half of world population. Rice quality mainly depends on the purity of the rice seed. In order to ensure the purity of rice variety, the recognition process is an essential stage. In this paper, we firstly propose to use histogram of oriented gradient (HOG) descriptor to characterize rice seed images. Since the size of image is totally random and the features extracted by HOG can not be used directly by classifier due to the different dimensions. We apply several imputation methods to fill the missing data for HOG descriptor. The experiment is applied on the VNRICE benchmark dataset to evaluate the proposed approach.
Data augmentation by combining feature selection and color features for image classification Kittikhun Meethongjan; Vinh Truong Hoang; Thongchai Surinwarangkoon
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6172-6177

Abstract

Image classification is an essential task in computer vision with various applications such as bio-medicine, industrial inspection. In some specific cases, a huge training data is required to have a better model. However, it is true that full label data is costly to obtain. Many basic pre-processing methods are applied for generating new images by translation, rotation, flipping, cropping, and adding noise. This could lead to degrade the performance. In this paper, we propose a method for data augmentation based on color features information combining with feature selection. This combination allows improving the classification accuracy. The proposed approach is evaluated on several texture datasets by using local binary patterns features.
Realtime face matching and gender prediction based on deep learning Thongchai Surinwarangkoon; Vinh Truong Hoang; Ali Vafaei-Zadeh; Hayder Ibrahim Hendi; Kittikhun Meethongjan
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 4: August 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i4.pp4068-4075

Abstract

Face analysis is an essential topic in computer vision that dealing with human faces for recognition or prediction tasks. The face is one of the easiest ways to distinguish the identity people. Face recognition is a type of personal identification system that employs a person’s personal traits to determine their identity. Human face recognition scheme generally consists of four steps, namely face detection, alignment, representation, and verification. In this paper, we propose to extract information from human face for several tasks based on recent advanced deep learning framework. The proposed approach outperforms the results in the state-of-the-art.