Fahmida Sharmin Jui
Southern University Bangladesh

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Blocking performance of extended pruned vertically stacked optical banyan structure under different link failure conditions Sabrina Alam; Fahmida Sharmin Jui
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 6: December 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i6.19008

Abstract

The blocking performance of extended pruned vertically stacked optical banyan (VSOB) networks under different link failure conditions has been analyzed in this paper. We applied plane fixed routing with linear search and plane fixed routing with random search algorithms to route the optical data through the network in our simulation. Our simulation results show that adding one or two extra planes to the pruned VSOB network reduces the blocking probability significantly. Beyond two extra planes, the decrease of blocking probability is not so significant. A close approximation of the minimum number of planes required to make the extended pruned vertically stacked optical banyan networks nonblocking has been presented.
The Effect of Deposition Rate on the Electrical Properties of Indium Tin Oxide (ITO) Thin Films Hadaate Ullah; Shahin Mahmud; Fahmida Sharmin Jui
Indonesian Journal of Electrical Engineering and Computer Science Vol 16, No 2: November 2015
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v16.i2.pp286-290

Abstract

Indium-tin oxide (ITO) which is optically transparent is referred as a “universal” electrode for various optoelectronic devices such as organic light emitting diodes (OLEDs). It is scientifically proved that the performance of OLEDs raises up significantly by exposing the ITO surface to oxygen plasma. This study employs conducting atomic force microscopy (C-AFM) for unique nanometer-scale mapping of the local current density of a vapor-deposited ITO film. Indium Tin Oxide (ITO) thin films have been prepared by using the reactive evaporation method on glass substrates in an oxygen atmosphere. It is found that the deposition rate plays a vital role in controlling the electrical properties of the ITO thin films. The resistivity and the electrical conductivity were also investigated. The electrical resistivity of 3.10 x10 –6 Ωm has been obtained with a deposition rate of 2 nm/min.