Azahari Salleh
Universiti Teknikal Malaysia Melaka (UTeM)

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Enhanced Antenna Design for Rectenna Application in the 2.45 GHz ISM Band Sharif Ahmed; Zahriladha Zakaria; Mohd Nor Husain; Azahari Salleh; Ammar Alhegazi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 14, No 4: December 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v14i4.4137

Abstract

In this paper a two layers microstrip antenna design at 2.45 GHz ISM band with Harmonic rejection filter embedded on the ground plane is presented. The two roger substrates with relative permittivity of 2.2 are separated by an air gap which enhances the antenna gain. The design is simulated using Computer Simulation Technology (CST) Studio Suite 2015. Different aperture couplings slots such as rectangular and triangular aperture coupling slots are studied and compared. It is found that the antenna with triangular aperture coupling slot enhances the antenna performance by suppressing 2nd and 3rd harmonics at 5 GHz and 8 GHz, respectively, increasing the antenna gain and providing a better circular polarization behavior. The simulated antenna design achieves a gain of 9 dB, return loss of -23.6dB, axial ratio of 1.27dB and axial-ratio bandwidth of 40.8% (2 ~ 3 GHz). The proposed antenna shows an enhancement in the antenna performance which makes it a suitable candidate for rectifying antenna or rectenna application as it can increase the total conversion efficiency resulting in a high output DC voltage used to power low power electronic and electrical devices such as wireless sensor.
Development of real-time monitoring BLE-LoRa positioning system based on RSSI for non-line-of-sight condition Abd Shukur Ja'afar; Kavetha Suseenthiran; Khairul Muzammil Saipullah; Mohamad Zoinol Abidin Abd Aziz; Adam Wong Yoon Khang; Azahari Salleh
Indonesian Journal of Electrical Engineering and Computer Science Vol 30, No 2: May 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v30.i2.pp972-981

Abstract

Indoor positioning has become popular in this decade and is used to locate users or objects in indoor environments. This is because global positioning system (GPS) is not efficient for indoor use due to the multipath fading effect. This research is about development bluetooth low energy (BLE) indoor positioning system with the aid of long range (LoRa) network and guideline on selection of the BLE beacons. Next, positioning systems are developed consisting of BLE beacons, a transceiver of hybrid BLE-LoRa module, a LoRa receiver and Raspberry Pi as real-time monitoring. The received signal strength indicator (RSSI) and BLE Mac address from BLE beacons received via LoRa network are analyzed using the positioning algorithm designed in MATLAB. The positioning algorithm incorporates distance estimation, filter implementation and trilateration technique. The estimated location is analyzed with the root mean square error (RMSE) and cumulative distribution function (CDF). According to the results, implementing the filter reduces the positioning accuracy error, achieving 90% accuracy of positioning error less than 1.20 meters for the whole testbed. Finally, the algorithm is embedded into Raspberry Pi to view the location via desktop.