Claim Missing Document
Check
Articles

Found 3 Documents
Search

Study of direct current motor power requirement for manikin smart irrigation systems Folkes E. Laumal; Darmawan Napitupulu; Oktaf B. Kharisma; Kusa B. N. Nope; Robinson A. Wadu
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 1: February 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i1.11622

Abstract

Manikin Irrigation Area (I.A) has ± 3000 ha of the area, utilizes the water source from the Tefmo Dam and distributes to the Primary-Secondary-Tertiary channels with controlled by watergates that operated by lift. This mechanism has resulted in jealousy and squabbles in farmer groups because of the inequality distribution that ultimately decreases crop production. The development of Microcontroller Technology has changed the Watergate model into an automated system based on certain parameters and algorithms. One of that being developed is the smart irrigation system based on Arduino at Manikin I.A that regulates the water to land based on the time from the Real-Time Clock sensor and uses Direct Current (DC) motor as a driver to watergate. While it may work, but the system has not considered the power requirement of DC motor when the water flows in the maximum discharge and pressure affecting the motor. This study examines the power requirement of an ideal DC motor for smart watergate in 5 open channels in Manikin I.A. Based on the open channel standard parameters, a total load measurement is performed when the water given speed (V) and pressure (p) then converted to energy. The study results that on 5 different open channels in Manikin I.A, with 0.30 m3/s maximum water discharge and 7.56 m/s2 flow rate, a watergate control requires DC motor that has 35 to 43 Watt power (39,4 Watt average power) or 3 to 3.5 Ampere current (3,26 Ampere average Current) in order to 24-hours work.
Pengembangan Pintu Air Irigasi Pintar berbasis Arduino untuk Daerah Irigasi Manikin Folkes Eduward Laumal; Edwin P. Hattu; Kusa B. N. Nope
Jurnal Rekayasa Elektrika Vol 13, No 3 (2017)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (681.654 KB) | DOI: 10.17529/jre.v13i3.8505

Abstract

In general, irrigation watergates placed in the Manikin Irrigation Area is supporting tools for agricultural activities that implement a primary–secondary–tertiary channel system. Manikin irrigation watergate is made of iron plates with the certain size which is operated by a move up/down or rotation. This mechanism has led the dissatisfaction service problems in farmers. This study has developed smart irrigation watergate based on Arduino by replacing the lifter/rotator part using DC motor that works automatically based on the Real-time Clock sensor. This sensor sends the data time to Arduino and used as the reference to open or close the watergate. The study used a design method includes interconnecting realtime clock sensors and Arduino, build the programming control, build the DC system on watergates and interconnection to control systems and testing. The test results show that the irrigation watergate moves up and move down every 2 hours based on the data time from the real-time clock, works with a 12-hour time format and operating on 2.7-ampere current.
Pengembangan Pintu Air Irigasi Pintar berbasis Arduino untuk Daerah Irigasi Manikin Folkes Eduward Laumal; Edwin P. Hattu; Kusa B. N. Nope
Jurnal Rekayasa Elektrika Vol 13, No 3 (2017)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17529/jre.v13i3.8505

Abstract

In general, irrigation watergates placed in the Manikin Irrigation Area is supporting tools for agricultural activities that implement a primary–secondary–tertiary channel system. Manikin irrigation watergate is made of iron plates with the certain size which is operated by a move up/down or rotation. This mechanism has led the dissatisfaction service problems in farmers. This study has developed smart irrigation watergate based on Arduino by replacing the lifter/rotator part using DC motor that works automatically based on the Real-time Clock sensor. This sensor sends the data time to Arduino and used as the reference to open or close the watergate. The study used a design method includes interconnecting realtime clock sensors and Arduino, build the programming control, build the DC system on watergates and interconnection to control systems and testing. The test results show that the irrigation watergate moves up and move down every 2 hours based on the data time from the real-time clock, works with a 12-hour time format and operating on 2.7-ampere current.