Raid Rafi Omar Al-Nima
Northern Technical University

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Deep fingerprint classification network Abdulsattar M. Ibrahim; Abdulrahman K. Eesee; Raid Rafi Omar Al-Nima
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 3: June 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i3.18771

Abstract

Fingerprint is one of the most well-known biometrics that has been used for personal recognition. However, faked fingerprints have become the major enemy where they threat the security of this biometric. This paper proposes an efficient deep fingerprint classification network (DFCN) model to achieve accurate performances of classifying between real and fake fingerprints. This model has extensively evaluated or examined parameters. Total of 512 images from the ATVS-FFp_DB dataset are employed. The proposed DFCN achieved high classification performance of 99.22%, where fingerprint images are successfully classified into their two categories. Moreover, comparisons with state-of-art approaches are provided.
Palm print verification based deep learning Lubab H. Albak; Raid Rafi Omar Al-Nima; Arwa Hamid Salih
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 3: June 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i3.16573

Abstract

In this paper, we consider a palm print characteristic which has taken wide attentions in recent studies. We focused on palm print verification problem by designing a deep network called a palm convolutional neural network (PCNN). This network is adapted to deal with two-dimensional palm print images. It is carefully designed and implemented for palm print data. Palm prints from the Hong Kong Polytechnic University Contact-free (PolyUC) 3D/2D hand images dataset are applied and evaluated. The results have reached the accuracy of 97.67%, this performance is superior and it shows that our proposed method is efficient.