Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Jurnal Gaussian

ANALISIS SURVIVAL UNTUK DURASI PROSES KELAHIRAN MENGGUNAKAN MODEL REGRESI HAZARD ADDITIF Triastuti Wuryandari; Sri Haryatmi Kartiko; Danardono Danardono
Jurnal Gaussian Vol 9, No 4 (2020): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v9i4.29259

Abstract

Survival data is the length of time until an event occurs. If  the survival  time is affected by other factor, it can be modeled with a regression model. The regression model for survival data is commonly based  on the Cox proportional hazard model. In the Cox proportional hazard model, the covariate effect act  multiplicatively on unknown baseline hazard. Alternative to the multiplicative hazard model is the additive hazard model. One of  the additive hazard models is the semiparametric additive  hazard model  that introduced by Lin Ying in 1994.  The regression coefficient estimates in this model mimic the scoring equation in the Cox model. Score equation of Cox model is the derivative of the Partial Likelihood and methods to maximize partial likelihood with Newton Raphson iterasi. Subject from this paper is describe the multiplicative and additive hazard model that applied to the duration of the birth process. The data is obtained from two different clinics,there are clinic that applies gentlebirth method while the other one no gentlebirth. From the data processing obtained the factors that affect on the duration of the birth process are baby’s weight, baby’s height and  method of birth. Keywords: survival, additive hazard model, cox proportional hazard, partial likelihood, gentlebirth, duration