Munef Abdullah Ahmed
Northern Technical University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

The classification of the modern arabic poetry using machine learning Munef Abdullah Ahmed; Raed Abdulkareem Hasan; Ahmed Hussein Ali; Mostafa Abdulghafoor Mohammed
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 5: October 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i5.12646

Abstract

In recent years, working on text classification and analysis of Arabic texts using machine learning has seen some progress, but most of this research has not focused on Arabic poetry. Because of some difficulties in the analysis of Arabic poetry, it was required the use of standard Arabic language on which “Al Arud”, the science of studying poetry is based. This paper presents an approach that uses machine learning for the classification of modern Arabic poetry into four types: love poems, Islamic poems, social poems, and political poems. Each of these species usually has features that indicate the class of the poem. Despite the challenges generated by the difficulty of the rules of the Arabic language on which this classification depends, we proposed a new automatic way of modern Arabic poems classification to solve these issues. The recommended method is suitable for the above-mentioned classes of poems. This study used Naïve Bayes, Support Vector Machines, and Linear Support Vector for the classification processes. Data preprocessing was an important step of the approach in this paper, as it increased the accuracy of the classification.
Efficient method for breast cancer classification based on ensemble hoffeding tree and naïve Bayes Royida A. Ibrahem Alhayali; Munef Abdullah Ahmed; Yasmin Makki Mohialden; Ahmed H. Ali
Indonesian Journal of Electrical Engineering and Computer Science Vol 18, No 2: May 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v18.i2.pp1074-1080

Abstract

The most dangerous type of cancer suffered by women above 35 years of age is breast cancer. Breast Cancer datasets are normally characterized by missing data, high dimensionality, non-normal distribution, class imbalance, noisy, and inconsistency. Classification is a machine learning (ML) process which has a significant role in the prediction of outcomes, and one of the outstanding supervised classification methods in data mining is Naives Bayess Classification (NBC). Naïve Bayes Classifications is good at predicting outcomes and often outperforms other classifications techniques. Ones of the reasons behind this strong performance of NBC is the assumptions of conditional Independences among the initial parameters and the predictors. However, this assumption is not always true and can cause loss of accuracy. Hoeffding trees assume the suitability of using a small sample to select the optimal splitting attribute. This study proposes a new method for improving accuracy of classification of breast cancer datasets. The method proposes the use of Hoeffding trees for normal classification and naïve Bayes for reducing data dimensionality.