Md. Marufur Rahman
University of Chittagong

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

An effective feature extraction method for rice leaf disease classification Muhammad Anwarul Azim; Mohammad Khairul Islam; Md. Marufur Rahman; Farah Jahan
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 2: April 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i2.16488

Abstract

Our society is getting more and more technology dependent day by day. Nevertheless, agriculture is imperative for our survival. Rice is one of the primary food grains. It provides sustenance to almost fifty percent of the world population and promotes huge amount of employments. Hence, proper mitigation of rice plant diseases is of paramount importance. A model to detect three rice leaf diseases, namely bacterial leaf blight, brown spot, and leaf smut is proposed in this paper. Backgrounds of the images are removed by saturation threshold while disease affected areas are segmented using hue threshold. Distinctive features from color, shape, and texture domain are extracted from affected areas. These features can robustly describe local and global statistics of such images. Trying a couple of classification algorithms, extreme gradient boosting decision tree ensemble is incorporated in this model for its superior performance. Our model achieves 86.58% accuracy on rice leaf diseases dataset from UCI, which is higher than previous works on the same dataset. Class-wise accuracy of the model is also consistent among the classes.