I Wayan Gunaya
Udayana University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Handwriting identification using deep convolutional neural network method Oka Sudana; I Wayan Gunaya; I Ketut Gede Darma Putra
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 4: August 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i4.14864

Abstract

Handwriting is a unique thing that produced differently for each person. Handwriting has a characteristic that remain the same with single writer, so a handwriting can be used as a variable in biometric systems. Each person have a different form of handwriting style but with a small possibility that same characters have something commons. This paper proposes a handwriting identification method using sentence segmented handwriting forms. Sentence form is used to get more complete handwriting characteristics than using a single characters or words. Dataset used is divided into three categories of images, binary, grayscale, and inverted binary. All datasets have same image with different in color and consist of 100 class. Transfer learning used in this paper are pre-trained model VGG19. Training was conducted in 100 epochs. Highest result is grayscale images with genuince acceptance rate of 92.3% and equal error rate of 7.7%.