Mohammad Syarief
University of Trunojoyo Madura

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Convolutional neural network for maize leaf disease image classification Mohammad Syarief; Wahyudi Setiawan
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 3: June 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i3.14840

Abstract

This article discusses the maize leaf disease image classification. The experimental images consist of 200 images with 4 classes: healthy, cercospora, common rust and northern leaf blight. There are 2 steps: feature extraction and classification. Feature extraction obtains features automatically using convolutional neural network (CNN). Seven CNN models were tested i.e AlexNet, virtual geometry group (VGG) 16, VGG19, GoogleNet, Inception-V3, residual network 50 (ResNet50) and ResNet101. While the classification using machine learning methods include k-Nearest neighbor, decision tree and support vector machine. Based on the testing results, the best classification was AlexNet and support vector machine with accuracy, sensitivity, specificity of 93.5%, 95.08%, and 93%, respectively.