Fadia Noori Hummadi Al-Nuaimy
University of Baghdad

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

A new eliminating EOG artifacts technique using combined decomposition methods with CCA and H.P.F. techniques Fadia Noori Hummadi Al-Nuaimy
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 5: October 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i5.14143

Abstract

Normally, the collected EEG signals from the human scalp cortex by using the non-invasive EEG collection methods were contaminated with artifacts, like an eye electrical activity, leading to increases in the challenges in analyzing the electroencephalogram for obtaining useful clinical information. In this paper, we do a comparison of using two decomposing methods (DWT and EMD) with CCA technique or High Pass Filter, for the elimination of eye artifacts from EEG. The eye artifacts (EOG) signals were extracted from the un-cleaned or raw EEG signals by DWT and EMD with CCA approach or H.P.F. The root means square error ratio of the uncontaminated EEG signal to the contaminated EEG signal with eye artifacts were the performance indicators for both elimination methods, which indicate that the combined CCA method outperforms the combined H.P.F method in the elimination of eye blinking contamination artifact from the EEG signal.
Enhancement of gain using a multilayer superstrate metasurface cell array with a microstrip patch antenna ِAli Khalid Jassim; Malik Jasim Farhan; Fadia Noori Hummadi Al-Nuaimy
Indonesian Journal of Electrical Engineering and Computer Science Vol 24, No 3: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v24.i3.pp1564-1570

Abstract

This research presents a new idea in the use of wireless communication antennas: it uses a multi-layered array of cells called a superstrate multi-layer metasurface (MTM) and is placed in front of a patch of microstrip antenna to absorb surface waves and prevent them from passing through the insulating material, which reduces the permeability of the insulator and thus improves the Antenna properties, The proposed hexagonal cell with resonators is placed on the flame resistant (FR4) substrate, with a relative permittivity of 4.3 and an area (14×14) mm2 . It was tested when the metasurface layer is 4 mm in front of the patch and the distance between the metasurface layers is 2 mm. The optimum distances were calculated by the sweep parameter, and the improved antenna gain and the input reflection coefficient were obtained together. (S11) has been improved from -31.217 to -38.338 dB and, the gain from 3.28 dB to 6.554 dB.