Yanliang Xu
Shandong University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Development of Tubular Linear Permanent Magnet Synchronous Motor Used in Oil-well Field Yanliang Xu; Xiquan Liu
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 9, No 3: December 2011
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v9i3.743

Abstract

The tubular linear permanent magnet synchronous motor (TLPMSM) is developed to constitute a new oil-well pump system named as linear motor-driven one replacing the normal beam balanced pump system mainly in order to eliminate the damageable steel pole. Its structure is determined based on the real drive demand and the corresponding analysis results are given. At last a small prototyped TLPMSM with stator outer diameter of 140mm, effective stator length of 864mm is designed and manufactured to verify the theoretical analysis and investigate the performance, and make preparation for the large practicable prototype in the future.
Formula Expression of Airgap Leakage flux Coefficient of Axial-Flux Permanent Magnet Motor Xiao Gong; Yanliang Xu; Feng Xin
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 11, No 2: June 2013
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v11i2.912

Abstract

Airgap leakage flux coefficient is one of the main parameters which must be given ahead of time when performing initial designs or getting performance results by magnetic circuit analysis for any kinds of electrical machines. Three -dimensional finite element method (3D-FEM) is the most reliable one to obtain the accurate leakage flux coefficient for axial-flux permanent magnet (AFPM) motor which definitely takes a much long time and is not advantageous to the motor’s initial and optimal design. By constituting the accurate lumped-parameter magnetic circuit (LPMC) model and computing the resultant magnetic reluctances, the analytical formula of the leakage flux coefficient of AFPM is given which is verified by 3D-FEM and the prototyped AFPM experiment.