N N N Abd Malik
Universiti Teknologi Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Exponential Tapered Balun with Different Sizes for UWB Elliptical Dipole Antenna M A Zakwan; S A Hamzah; S M Shah; K N Ramli; M S Zainal; L Audah; N Abdullah; A Ubin; F C Seman; A K Anuar; Adeeb Salh; M Esa; N N N Abd Malik
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 1: February 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i1.8360

Abstract

This work presents a broadband tapered balun with different sizes using nonlinear transition particularly suitable for planar and three-dimensional (3-D) dipole antennas for ultra-wideband (UWB) applications such as communication, radar systems and geolocation precision. Four baluns with wideband microstrip-to-parallel-strip transition using an elliptical structure for an elliptical dipole antenna are proposed. The initial balun structure consists of a nonlinear profile with a quarter-wavelength for both height and width. By studying the current distributions at the balun surface, it can be reduced to 25%, 50% and 75% from the original size. Measured results based on the reflection coefficients for all baluns are shown to be better than -10 dB from 1.0 GHz to 10 GHz. These baluns are integrated with an elliptical dipole which acts as a feeding circuit. Eight set of antennas with a planar and 3-D configurations with four different sizes are proposed in this work. The planar configurations are named as Planar 1, Planar 2, Planar 3 and Planar 4 while the 3-D configurations are named as 3D Dipole 1, 3D Dipole 2, 3D Dipole 3 and 3D Dipole 4, respectively. The results show that all antennas with the proposed baluns operates within the UWB frequency range.
Harmonic Suppression Dual-band Dipole Antenna with Parasitic Elements and a Stub A. B. Albishti; S A Hamzah; S M Shah; K N Ramli; N Abdullah; M S Zainal; L Audah; A Ubin; F C Seman; A K Anuar; S Z Sapuan; R Atan; M Esa; N N N Abd Malik
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 5: October 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i5.9188

Abstract

A dual-band harmonic suppression dipole antenna suitable for energy harvesting system is presented in this paper. A linear dipole with two parasitic elements is designed and fabricated with a capability to eliminate the harmonic of higher order modes. At first, the antenna resonates at 900 MHz and 2.7 GHz. Therefore, a parasitic element is added into each of the dipole’s arm to tune the second frequency band to 2.4 GHz to fit into wireless application. However, the presence of two parasitic elements has generated an unwanted harmonic at 4.0 GHz. Thus, a stub has been integrated into the antenna’s terminal (feed line) to suppress the 4.0 GHz frequency. This technique is suitable for developing a multiband antenna with harmonic suppression. The antenna is fabricated on a FR-4 board with the size of 72×152 mm2 which operates efficiently at 0.8 GHz and 2.4 GHz which is suitable for wireless communication applications. The prototype can suppress the undesired harmful harmonics present within the frequency range of 3 to 5 GHz. The antenna has a good potential to be used in a rectenna system with a dual-band frequency operation but with better performance. Simulation and measurement results obtained are in a good agreement, which have confirmed the proposed design concept.