Qinghe Wu
Beijing Institute of Technology

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Improved Leader Follower Formation controller for multiple Quadrotors based AFSA Rabah Abbas; Qinghe Wu
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 13, No 1: March 2015
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v13i1.994

Abstract

In this paper, formation tracking in  plane with equal height for all quadrotors is discussed. Two controllers are necessary. First, PID controller is used to ensure the tracking of the desired trajectory by the first quadrotor named leader. The formation of the quadrotors in  plane is achieved by using the directed lyapunov controller. In order to improve the controller performances, the artificial fish swarm algorithm is used to ensure the dynamic optimization of the parameter controllers. When the desired shape formation is achieved, PID controller is used again to ensure the keeping of this formation shape. Finally, simulation results demonstrate the effectiveness of the proposed controllers compared to the ordinary controller and also compared to the static optimization by using the same algorithm.
Performance comparison of consensus protocol and l-&phi approach for formation control of multiple nonholonomic wheeled mobile robots Ali Alouache; Qinghe Wu
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 8, No 1 (2017)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2017.v8.22-32

Abstract

This paper investigates formation control of multiple nonholonomic differential drive wheeled mobile robots (WMRs). Assume the communication between the mobile robots is possible where the leader mobile robot can share its state values to the follower mobile robots using the leader-follower notion. Two approaches are discussed for controlling a formation of nonholonomic WMRs. The first approach is consensus tracking based on graph theory concept, where the linear and angular velocity input of each follower are formulated using first order consensus protocol, such that the heading angle and velocity of the followers are synchronized to the corresponding values of the leader mobile robot. The second is l-φ approach (distance angle) that is developed based on Lyapunov analysis, where the linear and angular velocity inputs of each follower mobile robot are adjusted such that the followers keep a desired separation distance and deviation angle with respect to the leader robot, and the overall system is asymptotically stable.The aim of this paper is to compare the performances of the presented methods for controlling a formation of wheeled mobile robots with matlab simulations.