Igor Parkhomey
National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Assessment of quality indicators of the automatic control system influence of accident interference Igor Parkhomey; Juliy Boiko; Nataliia Tsopa; Iryna Zeniv; Oleksander Eromenko
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 4: August 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i4.15601

Abstract

This work concentrates the analysis of the system of automatic control of the directive diagram of the moving active electronically scanned array with a limited number of transceiver modules. The analysis revealed a number of shortcomings that lead to a significant increase in standard deviations, quadratic integral estimates, and an increase in transient time. The identified disadvantages lead to a decrease in the efficiency of the antenna system, an increase in the error rate at the reception, the inability of the system to react to disturbances applied to any point of the system in the event of a mismatch of a given signal/noise level. In accordance with the analysis, the mathematical model of the automatic control system of the directional diagram of the moving active electronically scanned array was considered, considering this a new method of estimating the quality indicators of the automatic control diagram of the directional diagram of the active electronically scanned array in a random setting and disturbing action was developed. The difference between the proposed method and the existing method is in the construction of an automatic control system with differential coupling equivalent to the combination due to the introduction of derivatives of the random setting action of the open compensation connection.
Experimental Studies on the Reactive Thrust of the Mobile Robot of Arbitrary Orientation Mikhail Polishchuk; Mikhail Tkach; Igor Parkhomey; Juliy Boiko; Oleksander Eromenko
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 8, No 2: June 2020
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v8i2.1681

Abstract

The problem of creating mobile robots of arbitrary orientation in the technological space is to ensure reliable retention of robots on the surface of any orientation. Therefore, well-known experimental studies are mainly devoted to the creation of systems for coupling the robot to the surface along which it moves. The purpose of this study is to create a device for compensating the gravitational load of a mobile robot. The article contains the results of experimental testing of a fundamentally new approach to counteract the gravitational load of a mobile robot, namely, the expediency of equipping the robot with a source of reactive thrust of a non-chemical origin. A pneumatic generator of aerodynamic lift is proposed as such a source. Such a force partially compensates or completely overcomes the gravitational load, while not allowing the transformation of a mobile robot into an aircraft. The specified condition is necessary to perform contact power technological operations in the maintenance of various industrial facilities. In other words, the thrust force should not exceed the adhesion forces of the mobile robot to the displacement surface. As a research method, a full factorial experiment of the operation of a jet thrust generator was used, which is a new way to increase the reliability of holding the robot on an arbitrary surface. The article describes the methodology and description of the full factorial experiment with varying independent factors at two extreme levels. As a result, an experimental solution to the problem of finding the quasi-optimal values of the aerodynamic lifting force depending on the parameters of the jet thrust generator is obtained. As a result, the combination of a new robot design with the results of experimental studies confirms the feasibility of using a pneumatic jet thrust generator as a means of increasing the reliability of holding mobile robots on an arbitrary orientation surface in the technological space.
Engineering Practices of Determining Transmission Capacity and Delay of Interconnecting Line Taking into Account its Configuration and Cost Igor Parkhomey; Juliy Boiko; Nataliia Tsopa; Oleksander Eromenko
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 8, No 3: September 2020
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v8i3.1643

Abstract

This article contains information on engineering practice of determining transmission capacity of computer network line. The article presents a variant of engineering synthesis of computer network, which is a combined process of mathematical and heuristic methods combining. The engineering synthesis is offered as vector and global, because it must result in network development, optimal in terms of its practical use. All the significant network quality indicators, including economic and practical, are taken into consideration. In case of engineering synthesis, it is not possible that only one quality indicator is significant: there are always at least two significant indicators – a cost and an indicator that characterizes the main effect that is achieved in case of network use (efficacy). If at least one of the quality indicators significant for practical use is not taken into account, such network cannot be considered optimal. Computer network synthesis usually consists of structure synthesis, parameters optimization and discrete network selection. If network topology is maintained unchanged, it is possible to formulate an optimization task for line transmission capacity. The solution of transmission capacity task, which is constantly changing, may be chosen as a starting point for the selection of discrete indicator of transmission capacity.