Mohammed Akour
Yarmouk University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Harnessing deep learning algorithms to predict software refactoring Mamdouh Alenezi; Mohammed Akour; Osama Al Qasem
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 6: December 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i6.16743

Abstract

During software maintenance, software systems need to be modified by adding or modifying source code. These changes are required to fix errors or adopt new requirements raised by stakeholders or market place. Identifying thetargeted piece of code for refactoring purposes is considered a real challenge for software developers. The whole process of refactoring mainly relies on software developers’ skills and intuition. In this paper, a deep learning algorithm is used to develop a refactoring prediction model for highlighting the classes that require refactoring. More specifically, the gated recurrent unit algorithm is used with proposed pre-processing steps for refactoring predictionat the class level. The effectiveness of the proposed model is evaluated usinga very common dataset of 7 open source java projects. The experiments are conducted before and after balancing the dataset to investigate the influence of data sampling on the performance of the prediction model. The experimental analysis reveals a promising result in the field of code refactoring prediction