Nurbaity Sabri
Universiti Teknologi MARA

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

Herbal plant recognition using deep convolutional neural network Izwan Asraf Md Zin; Zaidah Ibrahim; Dino Isa; Sharifah Aliman; Nurbaity Sabri; Nur Nabilah Abu Mangshor
Bulletin of Electrical Engineering and Informatics Vol 9, No 5: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (552.13 KB) | DOI: 10.11591/eei.v9i5.2250

Abstract

This paper investigates the application of deep convolutional neural network (CNN) for herbal plant recognition through leaf identification. Traditional plant identification is often time-consuming due to varieties as well as similarities possessed within the plant species. This study shows that a deep CNN model can be created and enhanced using multiple parameters to boost recognition accuracy performance. This study also shows the significant effects of the multi-layer model on small sample sizes to achieve reasonable performance. Furthermore, data augmentation provides more significant benefits on the overall performance. Simple augmentations such as resize, flip and rotate will increase accuracy significantly by creating invariance and preventing the model from learning irrelevant features. A new dataset of the leaves of various herbal plants found in Malaysia has been constructed and the experimental results achieved 99% accuracy.
Evaluation of Color Models for Palm Oil Fresh Fruit Bunch Ripeness Classification Nurbaity Sabri; Zaidah Ibrahim; Dino Isa
Indonesian Journal of Electrical Engineering and Computer Science Vol 11, No 2: August 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v11.i2.pp549-557

Abstract

This paper investigates the application of eight color models for automatic palm oil Fresh Fruit Bunch (FFB) ripeness classification with multi-class Support Vector Machine (SVM).  Ripeness classification is important during harvesting to ensure that they are harvested during the correct ripe stage for optimum oil production.  Since color is a significant indicator for agriculturists to determine the ripeness of FFB, it is critical to determine the right color model. Eight color models have been investigated namely, HSV, I1I2I3, LAB, XYZ, YCbCr, YIQ, YUV and RGB. Color moments were extracted from each of these color models for the classification of four stages of FFB ripeness that are unripe, under-ripe, ripe and over-ripe.  A database of five hundred images of palm oil FFB has been constructed and experiments showed that YCbCr and YUV outperform the other color models.
Evaluation of CNN, Alexnet and GoogleNet for Fruit Recognition Nur Azida Muhammad; Amelina Ab Nasir; Zaidah Ibrahim; Nurbaity Sabri
Indonesian Journal of Electrical Engineering and Computer Science Vol 12, No 2: November 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v12.i2.pp468-475

Abstract

Fruit recognition is useful for automatic fruit harvesting. Fruit recognition application can reduce or minimize human intervention during fruit harvesting operation. However, in computer vision, fruit recognition is very challenging because of similar shapes, colors and textures among various fruits. Illuminations changes due to weather condition also leads to a challenging task for fruit recognition. Thus, this paper tends to investigate the performance of basic Convolutional Neural Network (CNN), Alexnet and Googlenet in recognizing nine different types of fruits from a publicly available dataset.  The experimental results indicate that all these techniques produce excellent recognition accuracy, but basic CNN achieves the fastest recognition result compared with Alexnet and Googlenet.
Pre-trained classification of scalp conditions using image processing Shafaf Ibrahim; Zarith Azuren Noor Azmy; Nur Nabilah Abu Mangshor; Nurbaity Sabri; Ahmad Firdaus Ahmad Fadzil; Zaaba Ahmad
Indonesian Journal of Electrical Engineering and Computer Science Vol 20, No 1: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v20.i1.pp138-144

Abstract

Scalp problems may occur due to the miscellaneous factor, which includes genetics, stress, abuse and hair products. The conventional technique for scalp and hair treatment involves high operational cost and complicated diagnosis. Besides, it is becoming progressively important for the payer to investigate the value of new treatment selection in the management of a specific scalp problem. As they are generally expensive and inconvenient, there is an increasing need for an affordable and convenient way of monitoring scalp conditions. Thus, this paper presents a study of pre-trained classification of scalp conditions using image processing techniques. Initially, the scalp image went through the pre-processing such as image enhancement and greyscale conversion. Next, three features of color, texture, and shape were extracted from each input image, and stored in a region of interest (ROI) table. The knowledge of the values of the pre-trained features is used as a reference in the classification process subsequently. A technique of support vector machine (SVM) is employed to classify the three types of scalp conditions which are alopecia areata (AA), dandruff and normal. A total of 120 images of the scalp conditions were tested. The classification of scalp conditions indicated a good performance of 85% accuracy. It is expected that the outcome of this study may automatically classify the scalp condition, and may assist the user on a selection of suitable treatment available.
Leaf Recognition using Texture Features for Herbal Plant Identification Zaidah Ibrahim; Nurbaity Sabri; Nur Nabilah Abu Mangshor
Indonesian Journal of Electrical Engineering and Computer Science Vol 9, No 1: January 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v9.i1.pp152-156

Abstract

This research investigates the application of texture features for leaf recognition for herbal plant identification.  Malaysia is rich with herbal plants but not many people can identify them and know about their uses.   Preservation of the knowledge of these herb plants is important since it enables the general public to gain useful knowledge which they can apply whenever necessary.  Leaf image is chosen for plant recognition since it is available and visible all the time.   Unlike flowers that are not always available or roots that are not visible and not easy to obtain, leaf is the most abundant type of data available in botanical reference collections.  A comparative study has been conducted among three popular texture features that are Histogram of Oriented Gradients (HOG), Local Binary Pattern (LBP) and Speeded-Up Robust Features (SURF) with multiclass Support Vector Machine (SVM) classifier.  A new leaf dataset has been constructed from ten different herb plants.  Experimental results using the new constructed dataset and Flavia, an existing dataset, indicate that HOG and LBP produce similar leaf recognition performance and they are better than SURF.
Convolutional neural network vs bag of features for bambara groundnut leaf disease recognition Hafizatul Hanin Hamzah; Nurbaity Sabri; Zaidah Ibrahim; Dino Isa
Indonesian Journal of Electrical Engineering and Computer Science Vol 14, No 1: April 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v14.i1.pp368-374

Abstract

This paper investigates bambara groundnut leaf disease recognition using two popular techniques known as Convolutional Neural Network (CNN) and Bag of Features (BOF) with Speeded-up Robust Feature (SURF) and Support Vector Machine (SVM) classifier.  Leaf disease recognition has attracted many researchers because the outcome is useful for farmers. One of the crops that provide high income for farmers is bambara groundnut but the leaves are easily infected with diseases especially after the rain.  This could affect the crop productivity.  Thus, automatic disease recognition is crucial.  A new dataset that consists of 400 images of the infected and non-infected leaves of bambara groundnut has been constructed. The experimental results indicate that both of these techniques produce excellent leaf disease recognition accuracy.