Ahmed Hashim Ah-yasari
University of Babylon

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 7 Documents
Search

Fabrication and studying the dielectric properties of (polystyrene-copper oxide) nanocomposites for piezoelectric application Dalal Hassan; Ahmed Hashim Ah-yasari
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (553.223 KB) | DOI: 10.11591/eei.v8i1.1019

Abstract

The preparation of (polystyrene-copper oxide) nanocomposites have been investigated for piezoelectric application. The copper oxide nanoparticles were added to polystyrene by different concentrations are (0, 4, 8 and 12) wt.%. The structural and A.C electrical properties of (PS-CuO) nanocomposites were studied. The results showed that the dielectric constant and dielectric loss of (PS-CuO) nanocomposites decrease with increase in frequency. The A.C electrical conductivity increases with increase in frequency. The dielectric constant, dielectric loss and A.C electrical conductivity of polystyrene increase with increase in copper oxide nanoparticles concentrations. The results of piezoelectric application showed that the electrical resistance of (PS-CuO) nanocomposites decreases with increase in pressure.
Fabrication of new ceramics nanocomposites for solar energy storage and release Aseel Hadi; Ahmed Hashim Ah-yasari; Dalal Hassan
Bulletin of Electrical Engineering and Informatics Vol 9, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (196.606 KB) | DOI: 10.11591/eei.v9i1.1323

Abstract

The carbides nanostructures have huge applications in renewable energy fields such as the saving of solar energy and release which attributed to the good their properties (thermal, electrical, mechanical, optical and chemical). So, in this paper, the solar energy storage and release of carbides nanoparticles/water for building heating and cooling applications have been investigated with different concentrations of metals carbides nanoparticles (tantalum carbide-silicon carbide). The results showed that the melting and solidification times for thermal energy storage and release decrease with an increase (TaC-SiC) nanoparticles concentrations. From the obtained results, the TaC/SiC nanostructures/ water nano-system are considered as promising materials for solar energy storage and release with high efficiency and high gain (more than 50% compare with the water). Also, the TaC/SiC may be used for heating and cooling fields with good performance and high gain.
Fabrication of (Polymer Blend-magnesium Oxide) Nanoparticle and Studying their Optical Properties for Optoelectronic Applications Alaa J. Kadham; Dalal Hassan; Najlaa Mohammad; Ahmed Hashim Ah-yasari
Bulletin of Electrical Engineering and Informatics Vol 7, No 1: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v7i1.839

Abstract

Nanocomposites used in many optical devices applications. This aims to preparation of new type of polymer and study their optical properties. The polyvinyl pyrrolidone-carboxymethyl cellulose blend and magnesium oxide nanocomposites have been fabricated. The nanocomposites are prepared for different concentrations of polymer blend and magnesium oxide nanoparticles. The optical properties of nanocomposites were studied. The experimental results showed that the absorbance, absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity of (PVP-CMC) blend are increased with increase of the MgO nanoparticles concentration. The transmittance and energy band gap are decreased with increase of the MgO nanoparticles concentration. The nanocomposites have high absorbance in UV region which may be used for radiation shielding application.
Fabrication of (Polymer Blend-magnesium Oxide) Nanoparticle and Studying their Optical Properties for Optoelectronic Applications Alaa J. Kadham; Dalal Hassan; Najlaa Mohammad; Ahmed Hashim Ah-yasari
Bulletin of Electrical Engineering and Informatics Vol 7, No 1: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (408.899 KB) | DOI: 10.11591/eei.v7i1.839

Abstract

Nanocomposites used in many optical devices applications. This aims to preparation of new type of polymer and study their optical properties. The polyvinyl pyrrolidone-carboxymethyl cellulose blend and magnesium oxide nanocomposites have been fabricated. The nanocomposites are prepared for different concentrations of polymer blend and magnesium oxide nanoparticles. The optical properties of nanocomposites were studied. The experimental results showed that the absorbance, absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity of (PVP-CMC) blend are increased with increase of the MgO nanoparticles concentration. The transmittance and energy band gap are decreased with increase of the MgO nanoparticles concentration. The nanocomposites have high absorbance in UV region which may be used for radiation shielding application.
Fabrication and studying the dielectric properties of (polystyrene-copper oxide) nanocomposites for piezoelectric application Dalal Hassan; Ahmed Hashim Ah-yasari
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1191.014 KB) | DOI: 10.11591/eei.v8i1.1019

Abstract

The preparation of (polystyrene-copper oxide) nanocomposites have been investigated for piezoelectric application. The copper oxide nanoparticles were added to polystyrene by different concentrations are (0, 4, 8 and 12) wt.%. The structural and A.C electrical properties of (PS-CuO) nanocomposites were studied.The results showed that the dielectric constant and dielectric loss of (PS-CuO) nanocomposites decrease with increase in frequency. The A.C electrical conductivity increases with increase in frequency. The dielectric constant, dielectric loss and A.C electrical conductivity of polystyrene increase with increase in copper oxide nanoparticles concentrations. The results of piezoelectric application showed that the electrical resistance of (PS-CuO) nanocomposites decreases with increase in pressure.
Fabrication of (Polymer Blend-magnesium Oxide) Nanoparticle and Studying their Optical Properties for Optoelectronic Applications Alaa J. Kadham; Dalal Hassan; Najlaa Mohammad; Ahmed Hashim Ah-yasari
Bulletin of Electrical Engineering and Informatics Vol 7, No 1: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (408.899 KB) | DOI: 10.11591/eei.v7i1.839

Abstract

Nanocomposites used in many optical devices applications. This aims to preparation of new type of polymer and study their optical properties. The polyvinyl pyrrolidone-carboxymethyl cellulose blend and magnesium oxide nanocomposites have been fabricated. The nanocomposites are prepared for different concentrations of polymer blend and magnesium oxide nanoparticles. The optical properties of nanocomposites were studied. The experimental results showed that the absorbance, absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity of (PVP-CMC) blend are increased with increase of the MgO nanoparticles concentration. The transmittance and energy band gap are decreased with increase of the MgO nanoparticles concentration. The nanocomposites have high absorbance in UV region which may be used for radiation shielding application.
Fabrication and studying the dielectric properties of (polystyrene-copper oxide) nanocomposites for piezoelectric application Dalal Hassan; Ahmed Hashim Ah-yasari
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1191.014 KB) | DOI: 10.11591/eei.v8i1.1019

Abstract

The preparation of (polystyrene-copper oxide) nanocomposites have been investigated for piezoelectric application. The copper oxide nanoparticles were added to polystyrene by different concentrations are (0, 4, 8 and 12) wt.%. The structural and A.C electrical properties of (PS-CuO) nanocomposites were studied.The results showed that the dielectric constant and dielectric loss of (PS-CuO) nanocomposites decrease with increase in frequency. The A.C electrical conductivity increases with increase in frequency. The dielectric constant, dielectric loss and A.C electrical conductivity of polystyrene increase with increase in copper oxide nanoparticles concentrations. The results of piezoelectric application showed that the electrical resistance of (PS-CuO) nanocomposites decreases with increase in pressure.