Samsul Haimi Dahlan
Universiti Tun Hussein Onn Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Design a compact square ring patch antenna with AMC for SAR reduction in WBAN applications Abdul Rashid Omar Mumin; R. Alias; Jiwa Abdullah; Samsul Haimi Dahlan; Jawad Ali; Sanjoy Kumar Debnath
Bulletin of Electrical Engineering and Informatics Vol 9, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (554.4 KB) | DOI: 10.11591/eei.v9i1.1686

Abstract

In this paper presents a compact square ring patch antenna with miniaturized AMC structure at 5.8 GHz for WBAN applications. To minimize detuning, keeping its radiation efficiency high and acceptable gain while keeping the SAR levels low for safety is a challenging task. One of the critical issues in WBAN antenna design is the size of the antenna for portable devices, because the size affects the gain and bandwidth. The AMC configuration decreases the back radiation and the effect frequency detuning results from the high loss in the human body. Furthermore, the AMC also increases the front-to-back ratio (FBR) of 15.3 dB. The proposed antenna has dimensions of 15.27×15.27×2.2 mm3 and provides a 404 MHz impedance bandwidth, with a gain improvement of 8.69 dBi and a 93.7% reduction of the initial SAR value. For this reason, the antenna is suitable for WBAN application in various fields, particularly in medical technology.
A 5G graphene antenna produced by screen printing method Siti Nor Hafizah Sa’don; Mohd Haizal Jamaluddin; Muhammad Ramlee Kamarudin; Fauzan Ahmad; Samsul Haimi Dahlan
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 2: August 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i2.pp950-955

Abstract

The save and fast manufacturing are required in order to achieve 5G technology. However, there are many kinds of manufacturing antenna which are depending on material applied in the antenna itself. Each type of manufacturing also has its own advantages and drawback. In this article, a graphene antenna for 5G applications is manufactured using screen printing method. A fine mesh resolution of 120 µm is used to print the antenna accurately. This kind of printing has capability to produce antenna in less than 5 minutes. The antenna made by conductive graphene ink has size of 11.8 x 12.2 x 0.076 mm3 and produced within a small amount of graphene ink. The measured antenna resonates at 15.04 GHz with reflection coefficient magnitude of -12.05 dB and percentage of impedance bandwidth is 30 % which is in the range of 13.3 to 18.0 GHz. The radiation pattern at E-plane and H-plane of the graphene antenna are simulated and measured where the result obtained are comparable.