Aisha Hassan Abdalla Hashim
International Islamic University Malaysia

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

MM-PNEMO: a mathematical model to assess handoff delay and packet loss Shayla Islam; Aisha Hassan Abdalla Hashim; Mohammad Kamrul Hasan; Md. Abdur Razzaque
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (560.183 KB) | DOI: 10.11591/eei.v8i2.1525

Abstract

Wireless networks incorporate Mobile Nodes (MNs) that use wireless access networks to communicate. However, the communication among these MNs are not remained stable due to the poor network coverage during inter mobility. Moreover, the wireless nodes are typically small that results in resource-constrained. Thus, it is uphill to use algorithms having giant processing power or memory footprint. Accordingly, it is essential to check schemes consistently to evaluate the performance within the probable application scenario. To do so, numerical analysis could be a notable method to grasp the performance of mobility management schemes as well as the constraint of evolving mobility management solutions specifically for multi-interfaced MR in Proxy NEMO environment. This paper analyzes handoff performance by using a mathematical model of Multihoming-based scheme to support Mobility management in Proxy NEMO (MM-PNEMO) environment. Moreover, a comparative study has been made among the standard Network Mobility Basic Support Protocol (NEMO BSP), Proxy NEMO (PNEMO) and MM-PNEMO scheme respectively. The performance metrics estimated for these schemes are mainly handoff delay and packet loss. This paper also analysed the packet loss ratio and handoff gain as a function of cell radius, number of SMR and velocity respectively. It is apparent that, the MM-PNEMO scheme shows lower packet loss ratio (1%) compared to NEMO-BSP (11%) and P-NEMO (6%).
MM-PNEMO: a mathematical model to assess handoff delay and packet loss Shayla Islam; Aisha Hassan Abdalla Hashim; Mohammad Kamrul Hasan; Md. Abdur Razzaque
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (560.183 KB) | DOI: 10.11591/eei.v8i2.1525

Abstract

Wireless networks incorporate Mobile Nodes (MNs) that use wireless access networks to communicate. However, the communication among these MNs are not remained stable due to the poor network coverage during inter mobility. Moreover, the wireless nodes are typically small that results in resource-constrained. Thus, it is uphill to use algorithms having giant processing power or memory footprint. Accordingly, it is essential to check schemes consistently to evaluate the performance within the probable application scenario. To do so, numerical analysis could be a notable method to grasp the performance of mobility management schemes as well as the constraint of evolving mobility management solutions specifically for multi-interfaced MR in Proxy NEMO environment. This paper analyzes handoff performance by using a mathematical model of Multihoming-based scheme to support Mobility management in Proxy NEMO (MM-PNEMO) environment. Moreover, a comparative study has been made among the standard Network Mobility Basic Support Protocol (NEMO BSP), Proxy NEMO (PNEMO) and MM-PNEMO scheme respectively. The performance metrics estimated for these schemes are mainly handoff delay and packet loss. This paper also analysed the packet loss ratio and handoff gain as a function of cell radius, number of SMR and velocity respectively. It is apparent that, the MM-PNEMO scheme shows lower packet loss ratio (1%) compared to NEMO-BSP (11%) and P-NEMO (6%).
MM-PNEMO: a mathematical model to assess handoff delay and packet loss Shayla Islam; Aisha Hassan Abdalla Hashim; Mohammad Kamrul Hasan; Md. Abdur Razzaque
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (560.183 KB) | DOI: 10.11591/eei.v8i2.1525

Abstract

Wireless networks incorporate Mobile Nodes (MNs) that use wireless access networks to communicate. However, the communication among these MNs are not remained stable due to the poor network coverage during inter mobility. Moreover, the wireless nodes are typically small that results in resource-constrained. Thus, it is uphill to use algorithms having giant processing power or memory footprint. Accordingly, it is essential to check schemes consistently to evaluate the performance within the probable application scenario. To do so, numerical analysis could be a notable method to grasp the performance of mobility management schemes as well as the constraint of evolving mobility management solutions specifically for multi-interfaced MR in Proxy NEMO environment. This paper analyzes handoff performance by using a mathematical model of Multihoming-based scheme to support Mobility management in Proxy NEMO (MM-PNEMO) environment. Moreover, a comparative study has been made among the standard Network Mobility Basic Support Protocol (NEMO BSP), Proxy NEMO (PNEMO) and MM-PNEMO scheme respectively. The performance metrics estimated for these schemes are mainly handoff delay and packet loss. This paper also analysed the packet loss ratio and handoff gain as a function of cell radius, number of SMR and velocity respectively. It is apparent that, the MM-PNEMO scheme shows lower packet loss ratio (1%) compared to NEMO-BSP (11%) and P-NEMO (6%).
Performance Enhancement of NEMO based VANET using Localization Router (LR) to reduce Handoff delays Shaikh Mohammad Ehsanur Rahman; Farhat Anwar; Aisha Hassan Abdalla Hashim
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 2: November 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i2.pp511-521

Abstract

Vehicular Ad hoc networks (VANETs) combined with vehicle-to-vehicle and vehicle-to-infrastructure communications can be considered as the most suitable technology to enable ITS (Intelligent Transport System) application bestowed upon travellers with mobility, safety and productivity with human comfort. As a delay sensitive ITS application, handoff delays and packet losses are critical parameters for maintaining seamless connectivity in VANET solution. During handoff, when mobile node (vehicle) is acquiring new CoA (care of address), packets directed towards that node are lost; because it’s old identity is no more valid. So in high speed dynamic vehicular environment the number of frequent handoffs would produce delay beyond the normal limit. Therefore, it is very important to resolve the issues of handoff delay and packet losses in VANET environment. As a solution, a domain based RHD-NV (Reducing Handoff Delay in NEMO based VANET) scheme is proposed in this paper. Number of vehicles moving towards the road constructs a domain where network mobility NEMO-BS protocol is applied. A vehicle is selected as MR (master router) and connected to the RSU (road side unit) to the internet and other vehicles in the domain work as LRs (localization router) and communicate through MR. Simulation tests performed in NS3 (network simulator) and MATLAB SIMULINK demonstrate that using LRs (localization router) in the domain, the number of handoffs and handoff delay are significantly reduced.