Bilal Jawed
International Islamic University Malaysia

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Principal component analysis for human gait recognition system Othman O. Khalifa; Bilal Jawed; Sharif Shah Newaj Bhuiyn
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (362.338 KB) | DOI: 10.11591/eei.v8i2.1493

Abstract

This paper represents a method for Human Recognition system using Principal Component Analysis. Human Gait recognition works on the gait of walking subjects to identify people without them knowing or without their permission. The initial step in this kind of system is to generate silhouette frames of walking human. A number of features couldb be exytacted from these frames such as centriod ratio, heifht, width and orientation. The Principal Component Analysis (PCA) is used for the extracted features to condense the information and produces the main components that can represent the gait sequences for each waiking human. In the testing phase, the generated gait sequences are recognized by using a minimum distance classifier based on eluclidean distance matched with the one that already exist in the database used to identify walking subject.
Principal component analysis for human gait recognition system Othman O. Khalifa; Bilal Jawed; Sharif Shah Newaj Bhuiyn
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (362.338 KB) | DOI: 10.11591/eei.v8i2.1493

Abstract

This paper represents a method for Human Recognition system using Principal Component Analysis. Human Gait recognition works on the gait of walking subjects to identify people without them knowing or without their permission. The initial step in this kind of system is to generate silhouette frames of walking human. A number of features couldb be exytacted from these frames such as centriod ratio, heifht, width and orientation. The Principal Component Analysis (PCA) is used for the extracted features to condense the information and produces the main components that can represent the gait sequences for each waiking human. In the testing phase, the generated gait sequences are recognized by using a minimum distance classifier based on eluclidean distance matched with the one that already exist in the database used to identify walking subject.
Principal component analysis for human gait recognition system Othman O. Khalifa; Bilal Jawed; Sharif Shah Newaj Bhuiyn
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (362.338 KB) | DOI: 10.11591/eei.v8i2.1493

Abstract

This paper represents a method for Human Recognition system using Principal Component Analysis. Human Gait recognition works on the gait of walking subjects to identify people without them knowing or without their permission. The initial step in this kind of system is to generate silhouette frames of walking human. A number of features couldb be exytacted from these frames such as centriod ratio, heifht, width and orientation. The Principal Component Analysis (PCA) is used for the extracted features to condense the information and produces the main components that can represent the gait sequences for each waiking human. In the testing phase, the generated gait sequences are recognized by using a minimum distance classifier based on eluclidean distance matched with the one that already exist in the database used to identify walking subject.