Omar A. Dawood
University of Anbar

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Multi-dimensional cubic symmetric block cipher algorithm for encrypting big data Omar A. Dawood; Othman I. Hammadi; Khalid Shaker; Mohammed Khalaf
Bulletin of Electrical Engineering and Informatics Vol 9, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v9i6.2475

Abstract

The advanced technology in the internet and social media, communication companies, health care records and cloud computing applications made the data around us increase dramatically every minute and continuously. These renewals big data involve sensitive information such as password, PIN number, credential numbers, secret identifications and etc. which require maintaining with some high secret procedures. The present paper involves proposing a secret multi-dimensional symmetric cipher with six dimensions as a cubic algorithm. The proposed algorithm works with the substitution permutation network (SPN) structure and supports a high processing data rate in six directions. The introduced algorithm includes six symmetry rounds transformations for encryption the plaintext, where each dimension represents an independent algorithm for big data manipulation. The proposed cipher deals with parallel encryption structures of the 128-bit data block for each dimension in order to handle large volumes of data. The submitted cipher compensates for six algorithms working simultaneously each with 128-bit according to various irreducible polynomials of order eight. The round transformation includes four main encryption stages where each stage with a cubic form of six dimensions.
Fast lightweight block cipher design with involution substitution permutation network (SPN) structure Omar A. Dawood
Indonesian Journal of Electrical Engineering and Computer Science Vol 20, No 1: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v20.i1.pp361-369

Abstract

In the present paper, a new cryptographic lightweight algorithm has been developed for the internet of things (IoT) applications. The submitted cipher designed with the involution Substitution Permutation Network SPN structure. The involution structure means that the same encryption algorithm is used in the decryption process except the ciphering key algorithm is applied in reverse order. The introduced algorithm encrypts the data with a block size of 128-bit 192-bit or 256-bit, which iterative with 10, 12 and 14-rounds respectively similar to the AES cipher. The design aspect supports an elegant structure with a secure involution round transformation. The main round is built without S-Box stage instead that it uses the on-fly immediate computing stage and the involution of mathematical invertible affine equations. The proposed cipher is adopted to work in a restricted environment and with limited resources pertaining to embedded devices. The proposed cipher introduces an accepted security level and reasonable gate equivalent (GE) estimation with fast implementation.